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Chapter 15 

System Thinking Begins with Human Factors: Challenges for the 

4th Industrial Revolution 

Avi Harel 

 

Synopsis 

The 3rd industrial revolution (IR) brought us two new disciplines critical for system design: systems 

engineering (SE) and human factors (HF). In the 3rd IR, the two disciplines did not integrate very well, 

because both disciplines were system-centric. This is changing in the 4th IR, with the emergence of 

system thinking. System thinking has two aspects. The internal aspect is about the collaboration 

between system components, and the contextual aspect is about the interaction with the real world, 

namely, the customers and stakeholders, as well as the operational constraints. System thinking is a two-

stage process, beginning with the contextual aspect, followed by the internal aspect. The role of HF is in 

the domain of contextual system thinking, namely, of integrating people in complex systems. The 

framework recently established for relating the systems to the real world is human-machine interaction 

(HMI). This new transdisciplinary framework enables us to bridge the chasm between the two 

disciplines. A model of HMI design proposed here regards two distinct views of the user, corresponding 

to the two aspects of system thinking: as a system operator, the user corresponds to the contextual 

aspect, and as a system component, the user corresponds to the internal aspect. As a system operator, in 

contextual system thinking, we are concerned about the HMI. As a system component, in internal 

system thinking, we are concerned about the human capabilities, as well as about safety issues. In the 4th 

IR, we need to reengineer the HF, in order to integrate it better with the SE. HMI engineering (HMIE) is 

a new discipline, intended to implement ideas and tenets of HMI, for the sake of enabling effective 

system thinking. A new model of human machine collaboration (HMC) enables representing formal 

definition of contextual information, including the operational scenario, and the operator’s goal. The 

model enables representing critical design dilemma, such as automation control and task management, 

in normal and exceptional operational conditions. New architectures, based on the new model, may 

result in better gain, in terms of productivity and safety. 
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15.1 Introduction 

A case study 

A few years ago, I visited a friend of mine at his home in Toronto. This guy boasted to me about a new 

system that he bought, enabling him to control his house using several small, mobile devices. He could 

control the lights, the TV systems, the music systems, the windows, etc., all by these small devices. 

When he finished describing to me the features he had there, his wife mentioned him politely that he 

was the only person in the house who could actually operate the system. She commented that she did not 

dare to touch the remote controls, because often, when she tried to close the lights in her bedroom, she 

ended up activating the TV or the stereo system in the living room, which was unpleasant and 

embarrassing.  

 

The legacy of the 3rd industrial revolution  

Traditionally, systems engineers and software engineers disregard the ways people might operate the 

system. Typically, they believe that their intuition is good enough to design operational procedures that 

the operators may follow easily and reliably. Typically, they are not aware of the risks of letting the 

operators deviate from the intended operational procedures. Often, they overlook the possibility of 

choosing the wrong option from among the various features incorporated in the interface, as was the 

case of the computerized house in Toronto, described earlier. They might overlook the fact that more 

may be less. If the operators have many options to choose from, the might not find the one they need. 

Typically, they do not bother to document the operational procedures, and to prevent diversions from the 

procedures by design. They are not ordinarily aware of the special education required for ensuring that 

the interaction is efficient and reliable. 

 

The challenge of the 4th industrial revolution   

The 4th industrial revolution (IR) is about a shift in our view of the effect of technology on our 

experience of using systems. In his keynote article on the significance of the fourth industrial revolution, 

Klaus Schwab (2016) sets the goal: 

“All of these new technologies are first and foremost tools made by people for people”. 

He then explains that, 

“[The] inexorable shift from simple digitization (the Third Industrial Revolution) to innovation 

based on combinations of technologies (the Fourth Industrial Revolution) is forcing companies to 

reexamine the way they do business.” 

Kenett et al. (2018) discuss different aspects of systems engineering in the context of the 4th IR, and 

concluded that in the near future:  
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 Virtually all systems will have porous and ill-defined boundaries  

 Virtually all systems will have ill-defined requirements which are changed frequently  

According to Cooper (1998), technology consists largely of pieces that work, but not at all well. This is 

often the fault of poorly designed user-interfaces. Too many devices ask too much of their users. Too 

many systems make their users feel stupid when they cannot get the job done. In the 4th IR, everything 

we regularly use in our home, work, transportation, is being equipped with new technology. Boy and 

Narkevicius, (2013) observed that “requirements, solutions and the world constantly evolve, and are 

very difficult to keep current.” Can we use systems of the 4th IR safely? 

 

Putting people first 

A primary challenge of system design in the 4th IR is about what people experience in going through this 

change. In the words of Schwab: “In the end, it all comes down to people and values. We need to shape 

a future that works for all of us by putting people first and empowering them and constantly reminding 

ourselves that all of these new technologies are first and foremost tools made by people for people.”  

 

Crossing the human boundaries 

In the first three industrial revolutions, the boundaries between technology and people were clear. 

Technology was a means to design products and systems. The effect of technology on the human 

behavior was indirect, through these deliverables. The new technologies imply changes in the ways 

people interact with the systems. In the 4th IR, technology is gradually crossing the boundaries, affecting 

directly the body and soul of people.  

 

15.2 Systems 

Definitions of systems 

According to ISO/IEC/IEEE 2015, following Bertalanffy (1968), the term “system” is a short name for 

“system-of-interest.” The general term ‘system’ does not require any purpose or interest, and may refer 

to natural systems as well. According to the INCOSE System Engineering Body of Knowledge 

(SEBoK), the interest of systems engineering is in engineered systems. According to Bartolomei el al., 

(2006) an engineering system is  

“An engineering system is a complex socio-technical system that is designed, developed, and actively 

managed by humans in order to deliver value to stakeholders.” 

 The SEBoK definition of ‘socio-technical system’ is “an engineered system which includes a 

combination of technical and human or natural elements.” 
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In this chapter, the system is a socio-technical system, which means that it includes technical and human 

elements. The technical elements are called here “functional units.” The human elements may be 

insiders, namely, operators, or outsiders, namely, stakeholders, such as users. 

 

System thinking  

Systems thinking is widely believed to be critical in handling the complexity facing the world in the 

coming decades. Richmond (1994), the originator of the systems thinking term, defines systems thinking 

as “the art and science of making reliable inferences about behavior by developing an increasingly deep 

understanding of underlying structure.” With systems thinking, a systems engineer “can see both the 

forest and the trees; one eye on each.” Senge (1990) defines systems thinking as a discipline for seeing 

wholes and a framework for seeing interrelationships rather than things, for seeing patterns of change 

rather than static snapshots. Sweeney  and  Sterman (2000) noticed that  systems  thinking  involves  the  

ability  to  represent  and  assess  dynamic  complexity  (e.g.,  behavior  that arises  from  the  interaction  

of  a  system’s  agents  over  time),  both  textually  and  graphically. 

Stave and Hopper (2007) observed that the term systems thinking is used in a variety of sometimes 

conflicting ways. Kopainsky, Alessi, and Davidsen (2011) assert that systems thinking should include 

appreciation for long term planning, feedback loops, non-linear relationships between variables, and 

collaborative planning across areas of an organization.  

Arnold and Wade (2015) compared the various definitions and came out with the definition that 

“Systems thinking is a set of synergistic analytic skills used to improve the capability of 

identifying and understanding systems, predicting their behaviors, and devising modifications to 

them in order to produce desired effects. These skills work together as a system.”  

The authors conclude that “the use of systems thinking transcends many disciplines, supporting and 

connecting them in unintuitive but highly impactful ways.”  

 

Layers of system thinking 

Following the discussion above, we may consider two aspects of system thinking:  

 The internal aspect is about the functional units integrated with the operators, collaboration 

between components of the engineered system, and  

 The contextual aspect is about the interaction of the engineered system with the real world, 

namely, the customers and stakeholders, as well as the operational constraints.  

Figure 1 illustrated the two layers of system thinking: 
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Figure 1 – Layers of System Thinking 

 

According to this model, the contextual aspect is defined based on requirements specifications, with 

respect to the user’s tasks and capability, and considering forecast of the context. Also, the internal 

aspect is defined design considerations about the various roles of the operators, and their collaboration 

with the functional units. 

This chapter is about ways people may integrate with systems, about necessary changes in the way 

engineers may implement the concept of system thinking, and about engineering activities enabling 

successful integration with its operators. 

 

Agile system thinking 

In the early days of the 3rd IR, system development followed the waterfall model. According to this 

model, the system design is based on the requirement specifications, which remained unchanged until 

the version release. This model did not work very well, because during the system development new 

requirements emerge. Therefore, the waterfall model was replaced by other models, such as iterative 

development or agile development, which facilitated changing the requirements during the system 

development. 

System thinking is a continuous process, integrated with agile development. The contextual aspect is the 

one that senses the need to change the requirements, and triggers the change. The internal aspect is the 

traditional response to changes, typical of agile development. 
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15.3 Human factors 

Traditional interaction definition 

Traditionally, the engineers who define the interaction with the operators are systems engineers or 

software engineers. Typically, they are technology-oriented, which means that they try their best to 

integrate state-of-the-art technological feature. Often, they are feature-oriented, which means that they 

include in the design as many features as the technology allows them to include, regardless of whether 

or how the operators will use them. Also, often, they are designer-centric, which means that optimize the 

interaction according to their knowledge about the operational procedures, and their own preferences.  

In the 3rd IR, we were concerned of the effect of the human-machine interaction on functional attribute: 

performance, production etc. In the 4th IR we are also concerned about subjective attributes, such as 

customer satisfaction and operator’s experience of making the system work as intended.  

 

Technology-driven interaction design 

Technology-oriented engineers love to offer as many features as they can, and they try to assist the 

operators in as many ways as they can. In the early days of computing, when people just started to write 

software on the first mainframe computers, Weinberg (1971) demonstrated and analyzed the trouble 

with technology-driven software programming. Technology developed much since 1971, but the 

troubles remain the same.  

Typically, software engineers focus on providing user interfaces that support the features specified in the 

requirement document. Often, they do not think how the operators will access these features, or if they 

use them correctly, in the proper situations (Cooper, 1998). They feel responsible for preventing bugs, 

but not for preventing operator’s errors (Harel, 2010). Infrequently used units may contain bugs that go 

unnoticed in normal operation. These bugs might hamper the interaction in exceptional conditions.  

Standish (1995) analyzed reasons for the failure of software projects. The conclusion of this analysis 

was that there is a huge gap between software development practices and engineering disciplines. They 

demonstrated their finding by comparing the attitude to failure of software projects to those of building 

bridges. They concluded that beside 3,000 years of experience, there is another difference between 

software failures and bridge failures. “When a bridge falls down, it is investigated and a report is written 

on the cause of the failure. This is not so in the computer industry where failures are covered up, 

ignored, and/or rationalized. As a result, we keep making the same mistakes over and over again” 

(Standish, 1995). Figure 2 illustrates the effect of software bugs on the user experience. 
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Figure 2 – The Inmates are Running the Asylum 

This kind of messages is helpful for the software programmers in the debugging, but is useless, and 

quite confusion, for the users. Interaction design using the framework of HMI enables solving this 

problem. In the 4th IR, new failure models are available to the system designers, enabling then to handle 

also the unexpected. Interaction designers employ interaction protocols to ensure that the operators can 

perceive and handle rare events, and recognize and understand unexpected situation. 

 

Feature-oriented design and testing 

Traditionally, interaction design is feature-oriented, which means that the by design the system offers  as 

many features as the technology allows, regardless of whether the operators will need them, how they 

find them, or if they add noise to the operators’ perception of the controls that they need to activate.  

An example of the trouble caused by unnecessary features is nuisance of beeps that many home 

appliances generate, just for the fun of the designer. Another example is of the delay option in home 

appliances. A user of an air conditioner or a drier that has this feature might confuse the delay control 

with other time-related controls, and activate it unintentionally. Then, the appliance would not work, 

because it is in delay mode. A user who just tried the basic features might not understand the meaning of 

the notifications on the panel or the remote control, and might not understand the meaning of the 

warning sound. The user might call a technician to see the appliance does not work, but when the 

technician arrives, the delay time is already over, and the appliance works perfectly. Somebody has to 

pay for the visit of the technician, which was in vain. 

 

Designer-centric interaction design 

Software developers often optimize the user interface to suit their own needs, namely, to facilitate the 

software development. For example, during the software debugging, the developers need to repeat the 

same action over and over again, each time testing the effect and outcome of a code or parameter value 

change. The activation of those actions which are tested frequently is tedious, because the access to the 

actuator may be through a sequence menu selections and searching. To facilitate such procedures, the 
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software developers often define shortcut keys, such as those of Gmail, presented in the following 

figure: 

 

Figure 3 – Shortcut keys in Gmail 

All the shortcuts in this figure were defined to facilitate the debugging of Gmail. Few, sophisticated 

users, may generate their own shortcuts. These shortcuts are sometimes problematic, when they are 

activated accidentally. Typically, the operator is not aware of the accidental activation of the shortcut 

key, and is confused by the unexpected change in the system situation. 

 

The usability shift 

In the beginning of the 3rd IR, system engineers were not aware of the role of human factors, and they 

did not consider it in the system design. The design was technology-oriented. People judged the value of 

systems in terms of functions. We did not care much about the operators. We thought about the ways the 

operators interact with the system, but not about the effect of the interaction on the other operator’s 

tasks. For example, we assumed that professional practitioners might be willing to spend time in order to 

learn how to use our system.  

By and by, following investigation of many accidents, systems engineers realized that they need to 

consider human factors in the design. By the end of the 3rd IR, more and more HF practitioners became 

part of the design team. Their charter is to look at the ways the operators use the system, and how human 

errors contribute to accidents and to performance reduction. Still, human factors are of lower priority. 

The functions were evaluated primarily in terms of performance, productivity and safety. Typically, the 

way to consider them is in two stages: first, the system is designed with the criteria of maximizing 

performance. Then, in a later stage, we review of the system design, looking for design flaws, 

hampering the system operation.  

From the discussion above we can conclude that HMI based on traditional practices might not be 

sufficiently good for the 4th IR.  
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The single most important factor of productivity assurance is employing usability assurance 

methodologies. The need to incorporate human factors in system design became obvious early when 

people started to use computers for designing office applications (Landauer, 1996). According to a 

Gartner report (1995), system developers need to focus on business suitability and usability. Usability 

has a significant impact on the success of systems and products. It relates to the actual usage of a 

system, but also to its effective design and development. According to Landauer, failing to build usable 

system may degrade a project's ability to deliver in time, budget, functionality, and quality.  

The science of usability engineering started to develop even earlier. Shneiderman (1980) suggested that 

software programmers could do better to ensure that the user of their programs find it friendly and easy 

to use. Norman and Draper (1986) introduced the principle of User-Centered Design (UCD) and 

Shneiderman (1987) proposed guidelines to implement these principles in the software design. Later, 

Card et al. (1983) explained and demonstrated how software developers can incorporate human factors 

to augment the productivity of software products. Today, it is a common practice to assign the task of 

user interface design (UID) to usability professionals, who know and understand the operational needs.  

 

Human factors engineering 

Any large organization whose mission is to design and develop systems for humans needs a well-

developed integration and process plan to deal with the challenges that arise from managing multiple 

subsystems. Human capabilities, skills, and needs must be considered early in the design and 

development process, and must be continuously considered throughout the development lifecycle (Fitts 

et al., 1987). Human factors engineering (HFE) is a framework for describing how people may integrate 

with a human-made system.  

People in prehistoric civilizations considered human factors whenever they had to design tools for their 

living. The need to assign an engineering term to natural behavior is due to accidents occurring during 

system operation (Meister, 1999). The Encyclopedia Britannica defines human-factors engineering, a 

“science dealing with the application of information on physical and psychological characteristics to the 

design of devices and systems for human use.”  

Traditionally, software engineers and systems engineers did not bother to consider the human factors. 

They preferred to focus on functionality and technology.  

They used to delegate the responsibility for interaction design to human factors engineers. After getting 

some experience with operating interactive systems, it became clear that user interfaces designed by 

systems engineers are often difficult to use, and sometimes disastrous. Harel and Weiss (2011) proposed 

that the methods for mitigating human risks should be integrated in the system engineering practices. 

Eventually, they proposed to extend the scope of systems engineering, adding methods and guidelines to 

help protect from unexpected events. The idea presented to systems engineers was that they could 

benefit from considering human factors in the system design (Jackson and Harel, 2017).  

For the purposes of systems engineering, it is helpful to consider two aspects of the HFE: 
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 The task view, in which we examine the ways people interact with the system 

 The capability view, in which we examine physical and mental limitation of the human 

operators, hampering successful operation. 

The challenges of the 4th IR about the task view are primarily in system thinking, about methodologies 

for system development, and about the opportunities to implement these methodologies using new 

technologies. The challenges about the capability view are about leveraging the physical and mental 

capacity of people through technology. This chapter focuses on the task view, namely, about 

methodologies for system development, enabling designers to improve the efficiency and safety in the 

human-machine interaction. 

 

The Human-System Integration Engineering Framework 

Unfortunately, systems engineers are not always aware of the benefits of considering human factors, and 

usability practitioners fail to explain their offer. There is a need to bridge this chasm from both sides. 

Systems engineers need to understand the benefits that they can get from incorporating human factors 

(Jackson and Harel, 2017), and usability practitioners need to demonstrate and explain to systems 

engineers how to integrate the theories of cognitive sciences in the system development. The way 

systems engineers implement their part is by “systems thinking.” The way usability practitioners 

implement their part is by “cognitive engineering.”  

Recently, usability practitioners discuss challenges of incorporating human factors in system 

development (e.g. McDermott el al., 2017). Also, Sillitto et al. (2018) have distinguished 

interdisciplinary from transdisciplinary. Interdisciplinary has to do with multiple disciplines to 

accomplish a task. Transdisciplinary, on the other hand, has to do with using multiple disciplines 

together to accomplish the task. Transdisciplinary addresses the cooperation and collaboration between 

the disciplines. Hence, using engineering, psychology, and human factors together constitutes a 

transdisciplinary science. 

Unfortunately, these works have not yet matured to an engineering discipline. The bridge that will 

enable crossing the chasm between SE and HF should be built using new methodologies about the way 

we define the interaction between the human operator and the machine. This bridge is the 

transdisciplinary framework of Human-System Integration (HSI), being developed recently. The 

following chart illustrates the location of the new discipline: 
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Figure 4 – HSI Engineering Discipline 

HSI Engineering addresses the cooperation and collaboration between the disciplines. Hence, using 

engineering, psychology, and human factors together constitutes a transdisciplinary science. 

Unfortunately, these works did not mature yet to an engineering discipline. The bridge that will enable 

crossing the chasm should be built using new methodologies about the way we define the interaction 

between the human operator and the machine.  

The transdisciplinary framework proposed here may enable to bridge the chasm between the SE and HF.  

 

Human Machine Integration-RelatedTterminology 

The concepts used in the Human Machine Integration (HMI) framework apply to various kinds of 

systems, defined in different industry domains. However, the use of HMI terms in the various domains 

is not the same. Also, terms used in a particular domain are not always adequate to the other domains. 

This HMI framework proposes a generic, common terminology, which may apply to all underlying 

domains. Table 1 compares terms of various concepts (column 1), in the context of consumer product 

(column 2) with those used in the context of safety-critical systems (column 3), and the generic term 

used in this chapter (column 4): 

Table 1: Human Machine Integration (HMI) terms comparison 
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Concept Consumer 

products 

Safety-critical 

systems 

Generic term 

chosen for this 

chapter 

The human part of the system User Operator Operator 

The interface between the system 

and the human operator 

User Interface 

(UI) 

Control panel Manual control 

Designing for facilitating the  

human part of the interaction 

UCD Procedure design HCID 

Disruption from normal operation Exception Hazard Diversion 

Situation awareness User orientation Situation awareness Situation awareness 

Recovery from a disruption Resumption Resilience Adjustment 

Protection level N.A. in 3rd IR System Integrity Level 

(SIL)  

Protection level 

Protection analysis N.A. in 3rd IR Layer Of Protection 

Analysis (LOPA) 

Protection analysis 

The concepts of protection level and the protection analysis are specific to safety-critical system. The 

terms mentioned in this table apply specifically to the process industry. The generic terms used in this 

chapter are hereby explained: 

 

Operators 

The term User was adequate in the early years, when people used various electronic devices at home, 

and later, when they used computers for office application. Recently, the term Human replaced the 

original term, as it applies also to people integrated with the system, such as operators or passive people, 

who are not users.  

It is helpful to use two distinct views of the operator: as a system controller and as a system unit. As a 

system controller, we are interested in functions: production, performance, effect, etc. As a system unit, 

we are interested in the operator’s ability to make the system work, and about safety. For example, we 

want to detect a situation of a pilot passed out due to G-LOC (g-force induced loss of consciousness) 

and activate an Auto-GCAS (Ground Collision Avoidance System) to stabilize the airplane and the pilot 

(Dockrill, 2016).  

As a system controller, the operator can have various roles: a user, motivated by functions and 

performance; a supervisor, motivated by the need to make sure that the system operates as intended; and 

a controller, who needs to manually make the system work. As a system unit, we are concerned about 

the operator’s ability to function as a system controller, which is determined by qualification, 

motivation, vigilance, etc. 
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15.4 Human Factor Challenges typical of the 3rd Industrial Revolution 

Understanding the Designer’s Rsponsibility 

A common design mistake, typical of the 3rd IR, is of assuming that the human operators can learn and 

keep operating according to all operational rules imposed on them. In reality, system operation often 

fails due to failure of the operators or users to follow the operational procedures, or to obey any other 

operational rules.  

According to prior studies (such as by Zonnenshain and Harel, 2008) failure is mostly due to common 

flaws in the interaction design. Many operators have other tasks to do, and operating the system might 

hamper their primary tasks, which are not related to the system’s operation.  

The principle of HMI is that the system design should consider known limitations of the human 

operators, and design the interaction such that the system operation is seamless, and well protected from 

errors.   

In the 4th IR, engineers are also concerned about the integration of the system operation with other 

operator’s tasks, including operating complementary systems, as well as about the effect of the system 

on the environment. 

 

Expanding the Scope of Quality Assurance 

In the beginning of the 3rd IR systems, design focused on performance attributes, such as productivity 

and gain. Then, they realize that system failure is a key factor to performance assurance. They 

introduced the concept of system quality, which was about preventing system failure. The first stage in 

preventing system failure was to examine the failure of system components. At that stage, quality 

assurance was about the reliability of system components, namely, reliability assurance. 

By and by, towards the beginning of the 4th IR system scientists gathered statistics about the sources of 

system failure, and realized that operator’s errors contribute to failure even more than component 

failure. For example, it has been reported that 70-80% of the aviation accidents are due to human errors 

(Wiegmann and Shappell, 1997). Statistics about the productivity of text editing show that typing error 

result in extending the typing time by a factor of two, and that human errors are associated with most of 

the accidents. Consequently, in the 4th IR, the concept of quality should be extended, to preventing 

human errors, beside component reliability (Zonnenshain and Harel, 2015).  

Similar to the traditional definition of quality, a way to evaluate the quality of a HMI is by measures of 

the rate of integration failure. We may regard the integration as being of high quality if the rate of failure 

is low. Accordingly, in order to evaluate the HMI, we need to assess the rate of various failure modes. A 

way to assess the failure modes was described by Zonnenshain and Harel (2015). According to their 

model, failure modes are associated with exceptional situations, namely, due to distraction from normal 

operation. Accordingly, the quality of a HMI may be assessed in terms of the rate of operating in 

exceptional situations. 

Traditionally, according to scientific disciplines (Popper, 1968), quality assurance relies on verification 

testing. In the 4th IR, the most important concern about sustaining a required level of performance is the 
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operator’s capability to respond gracefully to extreme conditions. The challenge of quality assurance in 

the 4th IR is about defining ways for assuring the system resilience to faults, both of critical components 

and of the human operators. 

In the 4th IR the role of human factors (HF) is changing, and they lead the requirements. In the 4th IR, 

HF should be integrated in the design right from the beginning. HF should lead the requirements 

specifications, as well as critical design decisions, such as about the system architecture. The challenges 

of embedding HF in the 4th IR are to develop practices for:  

 How to write usability-oriented requirements specifications 

 How to translate the usability considerations to design features. 

 

Expanding the Value of Human Machine I nteraction 

Originally, the primary goal of UCD was to facilitate the operation of customer products (Norman, 

1988). The vision was to design products that everybody can use. Therefore, the UCD methodology 

targeted the novices. Accordingly, the focus in the 3rd IR was on basic, normal operation, in normal 

situations. Later, gradually, the principles of UCD spread also to system design. Besides novices, the 

design principles also targeted experienced operators, which means that the design also targeted 

advanced stages of the operation. However, the focus still remained on normal operation, in normal 

conditions. Deviations from the normal were considered errors. 

In the 4th IR, we expect that the design will support the whole life cycle. A primary challenge of HMI in 

the 4th IR is to develop practices for supporting operation in auxiliary activities, such as maintenance and 

training, and also unusual conditions, such as testing and troubleshooting. 

 

 

The Focus of Human Machine Integration Design  

In the 3rd IR (and also today), the primary concern of UCD is performance. New design practices are 

proposed for maximizing the performance in normal operational conditions, focusing on usability traits. 

For example, Boy (2016) suggested that tangible user interfaces may be easy and safe to use.  

By and by, after gathering statistics about the sources of system failure, systems engineers realized that 

much of the operational time is spent operating in exceptional, non-productive situations. Typically, 

exception management is of lower priority in the system design. It is an informal task, not included in 

the requirements documents. It is a leftover, for the software engineers. Consequently, software 

development is often a bottleneck in the system development, typically behind schedule. The challenge 

of the 4th IR is to reduce the effect of exceptions. A challenge about HMI in the 4th IR is to develop 

practices for: 

 Preventing deviation of the system situation from normal to exceptional 

 Recovering from exceptional situations, and subsequently resuming normal operation. 

 

Context-dependent Interaction Design 



15 

 

In the 3rd IR, the architecture of HMI was based on concepts borrowed from system design. A common 

practice of describing the interaction between two hardware units was through a thin layer, an interface: 

each of the hardware units is capable of receiving input from the other unit through the interface, process 

the received data locally, and send output to the other unit, through the interface. 

In a typical architecture used for the HMI design, one of the two units was the system, and the other was 

the human operator. The interaction was through an interface, consisting of a control unit, enabling 

sending data and commands from the human operator to the system, and a display unit, enabling sending 

information about the system state from the system to the operator. A simple model commonly used in 

UCD proposes that the human activity is similar to that of the machine. However, in an HMI framework, 

the role of the two units is not symmetric. The human component is regarded as a black box. The 

interaction consists of combinations of the asymmetric architectures. The behavior of the human 

operator is subject to three mental activities, namely situation perception, decision making and 

command execution. Its behavior depends on information not available to the system designer, such as 

operational context, intentions, state of mind and personality. The designer cannot do anything to 

directly affect the operator’s perception or decision making.  

Using terms borrowed from hardware design, the human operator is a master and a client, and the 

system is a slave and a server. The master-slave model refers to the control aspect of the interaction, and 

the client-server model refers to the display aspect of the interaction. In the 3rd IR, it was the operators’ 

sole duty to deal not only with the uncertainty, but also with unexpected behavior of the system part. 

This kind of architecture is described in the following chart: 

 

Figure 5 – Classical HMI Model 

According to this model, the machine behavior is quite predictable, as long as all the components are 

reliable; besides the human operator, other external forces, defined as Context, also affect the machine 

behavior, through sensors, and algorithms. On the other hand, the behavior of the human operator is less 

predictable; the human perception is biased by improper vision, due to motivational, training and 

vigilance factors. The decision making, based on the situation evaluation, is biased by improper 

reasoning, due fuzzy task and goal setting, unsuited expectations, rationality and other personality traits 

of the human operator, and also by organizational pressures (Reason, 1990; Jackson and Harel, 2018). 

According to these models, the primary goals of UCD are: facilitating reliable perception, decision 
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support and protection from execution errors. The challenge of HMI in the 4th IR is to enable and guide 

system developers in designing systems that consider these factors. Limitations of this model are: 

 It is process-oriented, therefore, it does not highlight the value of the system, in terms of 

performance 

 Most significant factors affecting the system behavior are not in control. These factors are 

marked as clouds in the chart above.  

 Poor validity, inasmuch as there is no practical way to measure these, or to estimate the direction 

or magnitude of their effect (Popper, 1968) 

 

Human-machine Task Allocation 

The dilemma of task allocation is about the integration of automated processes with those controlled by 

the human operator. Automation is required when the system needs to respond quickly and accurately, 

and when the operators are not capable of fulfilling this need. Examples are, when an airplane needs to 

respond quickly to a sudden wind blow, or when a pilot becomes unconscious due to extreme G force 

(Learmount, 2011).  

Yet, automation might be a double-edged sword, when it disables the operator’s control, as was the case 

the Air France 296 accident on June 26, 1988 (Casey, 1993). Automation is applicable only for 

problems in which the system response is well defined, namely, when the designer may assume that the 

data required for the response selection will be available when they are required, and that they are 

reliable. In the 3rd IR, this was not always the case. When the developers do not have all the information 

required to design resilient automation, they often let the operators take charge. The problem is that the 

operators often fail to recognize the situation (Norman, 1990), and often are not trained to handle it 

(Bainbridge, 1983). 

In the 3rd IR, the task allocation was based on heuristics, namely, on the intuition and experience of the 

designers. A systematic approach to human-machine task allocation, commonly applied in the process 

industry, is by statistical process control (SPC). Kenett et al. (2009) suggested that we may apply this 

method also for usability control, by tracking usability changes. This method may be extended and 

applied for resilience control. The method is based on defining risk indicators. A risk indicator is a 

system parameter, such as operational temperature, with thresholds for warning, alarming, recovery time 

and emergency. The automation control is based on tracing the values of these parameters, calculating 

the trends, and responding when crossing the thresholds. The method applied to alarm design is 

illustrated in the following chart:  
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Figure 6 – Automation Control 

In the 4th IR, we may develop practices for optimal task allocation. Such practices should apply to both 

normal and exceptional situations.  

 

Managing the Human-machine Collaboration 

Collaboration management is about adapting the operational procedures to scenario changes. The 

problem of collaboration management extends the problem of task allocation. The result of human-

machine task allocation is a definition of the default behavior in normal and exceptional situations. 

Collaboration management is about situations when the default behavior is not appropriate. Specifically, 

when the operators need to take over a risky automated system behavior, as was the case of Air France 

296 accident (Casey, 1993), or when the system needs to take over a risky manual control, as was the 

case of the Air France 447 accident (BEA, 2012). 

In the 3rd IR, the collaboration management was based on heuristics, namely, on the intuition and 

experience of the designers. A key consideration was to assign tasks according to capability. Thus, 

routine tasks, requiring intensive, reliable data processing, which were easy to formulate, were assigned 

to the machine, while other tasks were assigned to the human operator. An example from transportation 

is the cooperation between the driver/pilot/captain and the machine. The machine needs to keep track of 

the route, in order to detect potential threats and to inform the operator about them. It is the operator’s 

job to take over the machine and cope with the threat.  

Accordingly, the collaboration may be by assigning the task of bookkeeping the history of system 

activity to the machine, while the operator’s tasks are about deciding on critical changes in the 

operational procedures. For example, the machine can validate the operation according to the 

procedures, and notify the operators about distractions. The operator’s tasks include responding to the 

notification, by changing the operational procedure, for example, to troubleshooting.  

A challenge about collaboration management in the 4th IR is to develop practices, in form of protocols, 

for collaboration management. The protocols may define the conditions in which the operators may 

override automation, as well as those in which the operator may enforce automated behavior, overriding 
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the default manual control. The conditions may be stated in terms of priority, which may affect 

characteristics of the task termination, parameter preservation and reset, etc. 

 

A new Human-machine Collaboration Model 

Adversity in the system operation is manifested by operating in exceptional situations, and that mishaps 

are associated with difficulties in adapting to the exceptional situation. The traditional model of HMI is 

one-dimensional, based on the concept of user interface (UI), comprising a display unit and a control 

unit: the system displays it situation through the display unit, and the operators invoke their command 

using the control unit. This model does not represent well the need to deal with the exceptions. The 

following figure illustrates a new HMI model, emphasizing the role of human-machine collaboration, 

which may be implemented in the 4th IR. 

 

Figure 7 – Human-Machine Collaboration 

The new model has several features, suited to comply with the opportunities of the 4th IR: 

a. An operator interface replaces the traditional user interface. The significance of the terminology 

change is that the interface serves all kinds of operators, including those who are not users of the 

system. The display to the operators comprises information received from a situation analyzer. 

b. A situation analyzer, tracing the situation changes, based on sensory data received from the 

system, the operator and the environment 

c. An automation control unit, intended to control the automation according to the situation, 

enabling the operator to override the automated system control, and enabling the system to 

override improper operator’s commands 

The human machine collaboration (HMC) design model assumes that the quality of the operators’ 

decision depends on the perception of the situation in general, and of exceptional situations in particular. 

Accordingly, the model focuses on avoiding, rebounding and recovery from exceptional situations. 

Critical factors, not controlled in implementations the classical model (above), are controlled in 

implementations based on the new model. The system operation is subject to rules, derived from the 

operational tasks and goals specified in the requirements documents. Operator’s errors are controlled by 

automation.  
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Scenario-oriented Collaboration Design 

Cooperation problems often emerge when the operators fail to comply with the operational procedure. 

This is often the result of a scenario change. Certain common barriers to successful integration may be 

attributed to the low level of interaction, and about insufficient support for changes in the operational 

scenario. In the 3rd IR, the interaction was defined in using an event-response model: the system 

responses to single actions, and the human response to information received from the system about its 

situation and activity. The specification of the high-level interaction was used as a framework for the 

interaction design. The design itself consisted of elaborating the specification in terms of the system 

response to events. What was missing is the operational context for the actions, namely, the system 

situation and the step in the operational procedure (the history of the action).  

In the 4th IR, we realize that the model of atomic event-responses is not sufficient for defining adequate 

integration, because besides the event, the adequate response should also depend on the operational 

situation and the operational procedures. A challenging goal of scenario-based interaction design in the 

4th IR is the development of means and practices for defining and storing task-level procedure protocols 

in a knowledge database, for tracing the interaction, and for responding to deviations from the required 

procedures. Such protocols may be used for controlling the operational procedures, to fit into the 

System-Theoretic Accident Model and Processes (STAMP) paradigm proposed by Leveson (2004). 

 

Behavior Management 

When a scenario changes, all the system units, as well as the operators, should synchronize with the 

change, to enable re-collaboration. Synchronization problems are due to wrong termination of the first 

scenario, or wrong resetting of the second scenario. Another problem is of rollback, namely, defining 

what happens when the second scenario ends, and how to resume the first scenario. 

In the 3rd IR, the definition of the system behavior on scenario change was based on heuristics, namely, 

on the intuition and experience of the designers. The requirement documents did not specify the 

protocols of the scenario transition. A significant challenge of behavior management in the 4th IR is to 

develop practices, including priorities and protocols, for changing an operational scenario. For example, 

a standard protocol may describe the rules about scenario changes as follows: 

 Save the system state, including procedure step 

 Reset the system situation, to allow the next task 

 Execute the interrupt 

 Conditional (ask the operator) resume the interrupted procedure 

 

 

Interaction styles 

Interaction styles are attributes of the user interface, affecting the user experience. The attributes mostly 

discussed are visual styles, such as screen background and layout design, shape, color and density of 

screen objects, appearance attributes, such as animation, salience, location, etc. Styles apply also to 
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object selection, such as direct access vs. menu selection, and to audio attributes, such as melody, 

loudness, pitch, speed, etc. 

Several guidelines about style definition were proposed during the 3rd IR. Shneiderman (1987) suggested 

to employ eight golden rules for user interface design. Nielsen (1993) proposed guidelines for designing 

web pages. Yet earlier, Shneiderman (1986) reported an experiment about interactive menu selection, in 

which interaction style optimized for novices was different from that of experienced user. Indeed, 

Zonnenshain and Harel (2015) have demonstrated that golden rules adequate for routine operation, with 

which the operators is very familiar, are not adequate for emergency operation, which the operators did 

not have any chance to experience beforehand. 

In the 4th IR, the dilemmas of interaction styles should be examined and studied. Recently, Boy (2016) 

proposed the concept of tangible interaction as a means to improve the reliability of the human 

perception of the situation. However, different tangible interfaces may be adequate to different 

scenarios. A challenge about choosing the proper style is to define the boundaries of scenario validity of 

the various styles.       

 

 

Beyond Root-cause Analysis 

In the 3rd IR (and even today) design for failure prevention was based on cause-effect fault analysis. The 

focus of common practices was on failure of hardware components. Common practices for such analysis 

include Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Hazard and Operability (HAZOP), 

Failure Mode and Effect Analysis (FMEA), etc. The focus was on the fault, triggering the sequence of 

events resulting in the accident. Other triggers, such as improper operator’s action, or a software bug, are 

typically regarded as unfortunate or unexpected. 

In the 4th IR, new failure models are available to the system designers, enabling them to handle also the 

unexpected. Scenario-oriented interaction design enables detecting situations of deviation from the 

operational procedures, even if the source for the deviation is unknown. Special procedures may enable 

the operators to respond gracefully to the unexpected situation, and to identify situations of operator’s 

slip. Subsequently, system designers may explore the log of activity recorded during the operation, and 

decide on means to prevent recurring events. 

A challenge about root cause analysis (RCA) in the 4th IR is to develop practices for coping with the 

unexpected, including: 

 Develop database management systems (DBMS) enabling the system designers to define the 

operational procedures, store them, trace them at run-time, compare the current activity with the 

expected and notify about deviations 

 Develop guidelines for responding to unexpected events gracefully 

 Develop tools for analysis of recurring deviations from the expected, and for reporting on them. 

 

Preventing Expected Diversions 
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Several methods for failure prevention were developed in the 3rd IR, based on cause-effect analysis. A 

well know example is the automatic shut-down of a system under high risk. Automatic emergency shut-

down is part of collision avoidance systems (CAS), SCRAM at boiling water reactors, "reactor trip" at 

pressurized water reactors, etc. The common practice for deciding on activating the shut down procedure 

is based on absolute criteria.  

Unexpected events are often due to operating in exceptional situations. Zonnenshain and Harel (2015) 

analyzed 67 incidents and developed a model of operational failure. A resilience model, based on the 

failure model, attributed the failure primarily to operating in exceptional situations. In the resilience 

model, the role of trigger is secondary to the primary source, which is operating in exceptional 

situations. A primary challenge in the 4th IR is to cope with exceptional situations, namely, to prevent 

them, and to facilitate the recovery, namely, the resumption of operating in normal situations. 

 

Preventing unexpected diversions 

Common system engineering methodologies and practices do not mitigate the risks of unexpected 

events, such as operator errors or mode errors, typically attributed to ‘force majeure’. Leveson (2004) 

proposed that the system should control its own behavior, by enforcing operation according to rules. 

Harel and Weiss (2011) proposed that we can mitigate such risks by design, by considering the human 

limitations in the interaction. Zonnenshain and Harel (2015) proposed that unexpected diversions are 

due to operating in exceptional situations. Therefore, to prevent unexpected diversions, the system needs 

to minimize the operation in exceptional situations. Also, they proposed that the system and the 

operators should collaborate in the troubleshooting and resuming a normal situation.  

A challenge about preventing unexpected diversions in the 4th IR is to develop practices for balancing 

the need to enable operating in unexpected situations, we the need to protect from the unexpected events 

while in an unexpected situation. 

 

Responding to Diversions 

Protecting from failure is costly in terms of time and budget. Typically, system engineers inform the UI 

designer about certain failure modes known to bother the stakeholders, but not about those that did not 

materialize yet to real costs. To illustrate, consider an example of basic control of a simple machine, 

based on an On-Off switch. In a design typical of the 3rd IR, the switch enabled the basic functions of 

starting and stopping the machine. In a typical design scenario, a system engineer will analyze failure 

modes and require that the design will incorporate means to prevent these failures. However, it is rare 

that the systems engineer will require that the interaction design includes means to protect from 

operator’s errors, or that it includes procedures for troubleshooting. In the 4th IR, HMI practices may 

include guidelines for supporting features for error prevention and for designing troubleshooting 

procedures. 

 

Protecting from the Unexpected 

The effectiveness of this approach is limited, when a design needs to empower the human operator in 

order to cope with the unexpected. In the 3rd IR, unexpected events were nobody’s business: typically, 
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the design specifications did not mention them. Even today, it is the job of the software engineers to 

protect the system from unexpected events; typically, however, software engineers do not care much 

about how the operators may possibly become aware of such events, and how they can possibly 

recognize and understand the exceptional situation.  

A theoretical limitation of these methods is that they deal with the expected, while many of the accidents 

are regarded as unexpected, even by hindsight. Harel and Weiss (2011) studied the nature of unexpected 

event, employing observations from Taleb (2007), and suggested the need to integrate in the system 

design special means for detecting and protecting from unexpected events. 

New methodologies developed in the 4th IR enable systems engineers to prevent the unexpected. For 

example, the STAMP methodology enforces the system to behave according to rules, thus avoiding 

unexpected situations (Leveson, 2004). Robert et al. (1998) assumed that unexpected behavior is due to 

incomplete specifications, and proposed a methodology for assuring that the requirements about the 

acceptable situations are complete.  

The interaction between the operators’ tasks is a major contributor to operational errors. The need to 

putting people first implies that we need to consider ways to prevent user errors. 

 

Expanding the Concept of Fault-tolerance 

In the 3rd IR, the assurance of fault tolerance was based on heuristics, namely, on the intuition and 

experience of the designers. Typically, the design for fault tolerance was about specific critical 

component. A fault of the operator, such as due to illness or vigilance problems, was regarded as 

misfortune. For example, along the history of combat aircrafts, many of them crashed due to excessive 

G force, that the human body could not tolerate.  

The new technologies developed in the 4th IR enable systems developers to shift much of the processing 

from the operators to the machine. More than ever before, automation enables overcoming embarrassing 

limitations of the human operators. For example, an autopilot can detect a situation of a pilot passed out 

due to G-LOC (g-force induced loss of consciousness), and alert colleagues, or activate safety measures 

such as Auto-GCAS (Ground Collision Avoidance System) to stabilize the airplane and the pilot 

(Dockrill, 2016). Referring to the examples above, in the 3rd IR, sensors for detecting sudden wind blow 

or for identifying the pilot mental state were not available, or were not reliable. In the 4th IR, such 

sensors may be available, enabling detection and proper responding also in extreme operational 

conditions. 

Challenges to achieving fault tolerance in the 4th IR are to develop practices for assuring extended fault-

tolerance, such as: 

 Means to detect and protect from situations of disabled operators 

 Notifying the operators about all deviations from the supported procedures 

 Providing guidelines for designing resilient troubleshooting and recovery procedures 
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Exception Handling 

Much of the productivity is wasted when the system reaches exceptional situations. The reason for this 

is because, the operators are not always trained well to cope with the exceptional situation, and the 

designers fail to facilitate the operator’s mental activities in unfamiliar situations. 

Software engineers often apply exception handlers to protect from expected exceptional situations. Even 

today, the unfortunate results of operating in exceptional situations is often regarded as an operator’s 

error, and sometimes as unexpected.  

A common limitation of traditional exception handlers is that they can capture only those exceptions 

which are expected, namely, which were identified in root-cause analysis. Another common limitation 

of traditional exception handlers is that they generate error message, of which the operators is not 

familiar. 

In the 4th IR, exception handling may expand from normal to exceptional situations. A primary 

challenge about exception handling in the 4th IR is to develop practices, in form of protocols, used to 

define the interaction in exceptional situations. These protocols may include definition of protocols for 

capturing unexpected events, as well as of the interaction following the exception. The practices should 

include specification of the way the system may notify the operators about the exception, as well as 

practices for minimizing the nuisance due to the notifications. 

 

Decision Support   

A decision is often defined as a conclusion or resolution reached after consideration. Decision making is 

sometimes defined as deciding on an action to execute, such as selecting a choice from available 

options.  

By design, we can control the likelihood of selecting a desired choice (Thaler and Sunstein, 2008). For 

example, Li et al. (2013) studied the effectiveness of alternative public policies targeted at increasing the 

rate of deceased donor organ donation. The experiment includes treatments across different default 

choices and organ allocation rules. The results indicate that the opt-out with priority rule system 

generates the largest increase in organ donation relative to an opt-in only program.  

Obviously, if this is the case, then the design should prefer the automated selection over asking the 

operator to make a decision. Therefore, we should assume that at design time we cannot know what will 

be the best choice at run time. Rather, we need to rely on the reasoning of the decision maker. 

Another method for affecting the option selection is by marking the preferred option as recommended. 

Both the default choice and the recommendation mark methods were employed extensively in the 3rd IR. 

However, the impact of employing these methods is much higher when people started to use the internet 

as a primary means for making business. An interaction designer needs to decide which of the two 

methods may be better for each of the possible decision situations. This is a challenge for the 4th IR. 

Norman (1990) has demonstrated that often the problem of decision making is actually a problem of 

missing critical information. An operator needs information in order to make the proper decisions. The 
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challenge of decision support in the 4th IR is of providing the operators with the information they need. 

New guidelines should be developed, regarding dilemmas such as: 

 How to make sure that the operators have all the information they need for the decision making 

 How to make sure that the information required is available, and that the operators know how to 

get it 

 How to make sure that the operators will  notice the required information, and that they perceive 

it correctly 

 How to avoid overwhelming the operator with distracting information. 

 

Proactive HMI Terminology  

In the 3rd IR systems engineers realized that they need to provide the operators with means to prevent 

failure, but they were not aware of the difficulties that the operators might experience in employing 

these means. If an operator failed to apply the means provided successfully, people attributed it to being 

irrational, or to making an error. The implication of this approach was that systems engineers did not 

feel responsible for assuring that the operators make the proper decisions, or for preventing errors. The 

approach to failure was reactive, namely, looking for someone to blame for the error. 

The term "human error" often refers to an unintentional action that triggered a failure. Such definition is 

commonly used in studies of organizational behavior (Frese and Keith, 2014). The problem with this 

definition is that in many cases, the loss cannot be attributed to any unintentional action, or even to a 

judgment error. In these cases, this term should rather be attributed to the interactive complexity 

(Perrow, 1984), namely, to operating the system in exceptional situations (Hollnagel et al., 2006).  

The new view of operators’ errors is that the organization can and should prevent use errors. It does not 

make sense to demand that the operators avoid making errors, because they cannot. The operators follow 

the Human Factors version of Murphy’s law: “If the system enables the operators to fail, eventually they 

will.” 

Operators' errors should be regarded as symptoms of the organizational deficiency that enables them, 

and not as the sources of the accident. The Human Factors Engineering approach to preventing user 

errors is by design, by considering the limitations of the users and the operators. This approach enables 

learning from incidents: instead of blaming the users, we focus on exploring why they failed, in order to 

understand how to prevent similar mishaps in the future. Recently, a new methodology for safety culture 

has been proposed, which defines the investigation of the stakeholders in the organization, such that 

safety considerations override personal interests (Reason, 1990). 

The term Use Error is a new term which is recently replacing the term User Error. The need for 

changing the term was because of common mal-practice of the stakeholders (the responsible 

organizations, the authorities, journalists) in cases of accidents: instead of investing in fixing the error-

prone design, the management attributed the error to the users (Dekker, 2007). User advocates (such as 

Reason, Hollnagel and Dekker) have noted that the user action is classified as an error only if the results 

are painful, implying that it is not the user who should be considered responsible for the errors 

(Hollnagel, 1983). The new term suggests that the incidence should be attributed to the way the system 
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is being used, rather than to the user. The term ‘Use Error’ is used also in recent standards, such as IEC 

62366: Application of Risk Management to Medical Devices. The standard defines Use Error as an: 

“…act or omission of an act that results in a different medical device response than intended by 

the manufacturer or expected by the user” 

The term Use Error suggests that the error is the result of temporal conditions. However, from the 

record of accident investigations it is evident that use errors are enabled by poor design and other 

incessant operational conditions, imposed by the responsible organization (Reason, 1997). IEC 62366 

includes an explanation (Annex A), emphasis ours: 

“This International Standard uses the concept of use error. This term was chosen over the more 

commonly used term of “human error” because not all errors associated with the use of medical 

device are the result of oversight or carelessness of the part of the user of the medical device. 

Much more commonly, use errors are the direct result of “poor user interface design.” 

Failure to prevent a mishap may be regarded as a design or implementation mistake. In the 4th IR, the 

preferred approach to handle failure is proactively, namely, designing systems in which the operators 

cannot make errors. A problem in implementing the proactive approach is related to the terminology 

associated with failure. If the failure is associated with irrational behavior or with errors, then the system 

designer does not have sufficient incentive to prevent the failure. In case of failure, the investigation 

focuses on the operators’ mistakes instead of finding ways to prevent similar failures in the future. 

A challenge of human machine interaction (HMI) terminology in the 4th IR is to enforce the stakeholders 

to use proactive terms, especially in accident investigation. When the operators made a decision that 

seems improper by hindsight, the reference to this decision should be in terms of the circumstances of 

the decision, such as ‘obscure information’. 

 

Dynamic Adaptivity 

In the 3rd IR, the HMI was examined in usability testing, prior to the system delivery and deployment. 

The problem is that after getting experience with the system operator, the operator’s behavior changes, 

and the demands for effective interaction change accordingly. Designers believed that adaptivity helps 

the operators. Accordingly, Microsoft designed its Office applications with adaptive menus, eliminating, 

hiding or disabling menu items that were not used frequently. 

The problem is that the operational demands change with experience. After the operators learned how to 

use the menu, they change, which means that the learning was useless. The operators need to learn the 

new setting, and to adapt the way the use the menus. This sequence repeats, as the system learns the new 

user’s behavior, and responds by adapting the menu structure again and again. 

Apparently, the straightforward adaptability described above is recursive, and to the user it appears as 

inconsistent. In the 4th IR, adaptivity should be by situation, not by the operator’s experience. Items 

available to the operators are those relevant to the situation, and accordingly supported by the design. 

The challenge of adaptivity in the 4th IR is to propose tools for assessing the benefits vs. the drawbacks 

of adaptivity, as well as guidelines for when to prefer it over consistency. 
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Interaction Adjustability  

During the system development and after deployment, it is almost always the case that some of the 

requirements need to change. Adjustability is about the changes in the ways we adjust the system 

parameters, such as alarm thresholds, to the changes of the operational context. 

A simple, straightforward technique for supporting agile development is by replacing constants by 

parameters, which the developers could change easily. This solution suited cases when the developer 

were not sure about the optimal value of a constant, for example, when the optimal temperature in a 

container in the process industry was not known before the integration testing. This solution suited also 

parameters used for the interaction design, such as risk indicators, used for alarming and for switching 

the operational mode.  

In the 3rd IR, and even today, the search for the optimal parameter is often by trial and error. This 

method is often expensive in terms of time, and budget. Statistical methods, such as trend analyzers are 

often employed to extrapolate the effect of parameter changes. A challenge about interaction design in 

the 4th IR is about the practices for deciding about the need to change operational parameters, such as 

switching to safe-mode operation, or alarm thresholds. The tools required to handle the optimization 

process are handy, however, the efforts and investment required to incorporate them in a project are 

remarkable. We may expect that in the 4th IR new methods and practices will be developed, enabling 

fast and easy adjustment of system parameters in general, and specifically of parameters used in the 

interaction.  

In the 3rd IR the thresholds defining the system behavior in various situations were often defined at 

design time. Often, the designers enabled customizing the behavior, by changing the thresholds. The 

typical way to decide on the need to change the settings was by experience. Typically, the way to decide 

on the rate of change was by trial. Typically, there were no guidelines for deciding on the optimal rate of 

signal to noise (S/N) in the variety of operational situations. Being unable to decide when and how to 

change the thresholds, system operators are reluctant to adjust the system behavior to the situation. 

The adjustability dilemma, namely, how to adjust the thresholds to the situation, has not yet been 

resolved even theoretically. A primary challenge for the 4th IR is to define guidelines for defining the 

optimal rate of S/N in various operational situations. Zonnenshain and Harel (2015) proposed an 

architecture enabling capturing situational changes, as well as means for getting the S/N ratio.  

A challenge about interaction adjustment in the 4th IR is about the practices for deciding about the need 

to change operational parameters, such as switching to safe-mode operation, or alarm thresholds. The 4th 

IR may present opportunities for applying data mining techniques in order to define guidelines for 

adjusting the S/N ratio. We may expect that in the 4th IR new methods and practices will be developed, 

enabling fast and easy adjustment of system parameters used for the interaction.  

 

Situation Awareness 

Situation awareness is about the human operators understanding of system status and the actual system 

state (Woods, 1988). Problems of situation awareness are key factors in accident development. Norman 
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(1990) attributed this kind of problems to design flaws, of not providing the operators with the 

information about the situation, which is critical for deciding on the appropriate behavior. 

Often, in the 3rd IR, the problem if situation awareness is due to missing information about the risks. For 

example, if a sensor designed to notify about a risk does not function, as was the case of the Pressure 

Operated Release Valve (PORV) in the Three Miles Island (TMI) accident (Perrow, 1984). A primary 

barrier to solving this problem is primarily technological. The 4th IR offers a solution to this problem, as 

new sophisticated, reliable means and methods are being developed, which may fulfill future needs. 

However, there is a problem of managing the high volumes of data, and eliciting information relevant to 

the operator’s perception of the situation. 

Another problem is of nuisance due to excessive or non-specific notifications. For example, Harel 

(2006) studied the sources of the failure of the public to respond properly to alarms about missile attacks 

during the Israeli war with Hezbollah, and concluded that the reason was the it was due to such 

nuisance. Situation awareness should be evidence-based, namely. This means that the information used 

for the decision making should be elicited from a large body of data recorded during the operation. A 

challenge about ensuring situation awareness in the 4th IR is about the ways to manage the big data, and 

to mine it and how to present it to the operators. The tools required to handle the information elicitation 

for the big data are handy, however, the efforts and investment required to incorporate them in a project 

are remarkable. We may expect that in the 4th IR new methods and practices will be developed, enabling 

fast and easy information elicitation in general, and specifically of the information required to facilitate 

the operator’s situation awareness. 

Another problem to solving this problem is design neglect. In today’s sophisticated, complex systems, it 

is quite probable that a designer might forget to include a sensor about a critical component in the 

design. Common design practices include ad hoc guidelines for testing critical components, but in a 

complex system even simple screws might become critical. Can we add a sensor for each screw in a 

complex system? This is a challenge for the 4th IR. 

 

 

Information Overload 

Let us assume that our system in the 4th IR has all sensors and algorithm to measure and report on all 

situational variables. The complementary problem is that the operators are overwhelmed with 

information, most of it irrelevant to their task. The problem is that they cannot find the needle in a 

haystack. The challenge in the 4th IR is to identify the information required for the decision that the 

operators need to make, and to present it to the operators, and nothing else. HMI in the 4th IR encourages 

interaction designers to present the data obtained from sensors in forms of information essential for 

proper decision-making, and to attract the operator’s attention to indication about critical situations. 

 

Rebounding from Operator Slips 

A method for preventing errors due to operator slip, commonly employed in the 3rd IR, is by verifying 

that the system can handle the operator’s input at the particular situation. Theoretically, system designers 

can specify the cases in which the system should reject the input in the requirements documents. 
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However, the amount of work involved in writing such requirements is huge, making it impractical. A 

practical method, is to specify the rules for proper operation, namely, the operational procedures, and to 

enforce the system to operate bound to these rules (Leveson, 2004). 

A challenge about rebounding from operator slips in the 4th IR is to develop practices for specifying the 

operational rules, and for transferring them to a database that the system can use to verify that the 

operation complies with the rules. 

 

Error Prevention 

The best way to learn how to operate a system is by trial and error (Jones et al., 2010). In order to enable 

this kind of learning, the interaction should mitigate the risks of costly errors. In the 3rd IR, software 

providers did not invest in preventing costly errors. As a result, the operators hesitated before trying, and 

avoided trying features that they did not know. The term Error is used extensively in investigations, 

implying that the operator are accountable for the incidence, in order to justify distracting the discussion 

from costly investment in resilience assurance, to cheap and handy personnel changes (Harel, 2011). 

To prevent errors, we need to understand them. Norman (1980) and Rasmussen (1982) proposed 

methods for classifying human errors. Also, Norman (1983) proposed various design rules based on 

analysis of human errors. Hollnagel et al. (2006) suggested that errors are tightly connected to 

deficiencies in the system resilience. It is a challenge of the 4th IR to develop and enforce guidelines for 

preventing costly errors, in order to facilitate learning by trial and error. 

 

Proactive Investigation 

Traditionally, safety engineering in the 3rd IR used to focus on the system side of the integration. 

Practices of safety assurance include assuring the reliability of critical components, robustness and 

redundancy. Typically, safety engineers did not deal with the human side. 

Investigators of many celebrated accidents, such as in transportation and in the process industry, 

attributed the source of the accident to the operators’ behavior, explaining that it did not match the 

system situation. Often, they attributed the behavior-situation mismatch to ambiguity of the HMI (e.g. 

Perrow, 1984). Traditionally, people expect the users to follow the operational instructions, and avoid 

making errors. In case of a use error, the user is accountable. For example, people expect that nurses 

respond promptly to all medical alarms, even though most of them are irrelevant. In case of an 

operational error, the operator is to blame. People expect that operators understand the safety 

implications of each option that they choose during the operation, in any future operational situation, 

based on unknown designers’ reasoning. 

In practice, users often fail to identify exceptional operational situations, to recall the operational 

instructions, and to predict the system behavior in these situations. Typically, in case of an accident, we 

accuse the user for negligence, and we accuse the operator for unreasonable operation. We consider the 

user errors as the source of the accident. In fact, most of the accidents are attributed to user errors.  
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Typical reaction to accidents in the 3rd IR were, and are still today, emotion-driven. Following an 

incident or an accident, the people involved typically focus on investigation issues rather than on 

improving the safety. In emotion-driven organizations, where the safety culture is biased, incident 

investigations often obey the "blame and punish" script (Zonnenshain and Harel, 2015). Emotion-driven 

response to incidents prohibits improving resilience, because the investigations do not focus on the 

design changes needed to improving the resilience. On the other hand, when the organization adopts 

safety culture, the investigations include recommendations for design changes, and the management 

promotes implementing these recommendations (Dekker, 2007). The guide proposes a procedure for 

continuous improvement of the system resilience by learning from mishaps, preventing this bias (Weiler 

and Harel, 2011). Following an incidence or an accident, the stakeholders’ reaction is typically emotion 

driven. In emotion-driven organizations, where the safety culture is biased by investigation, incidence 

investigation often follows the "blame and punish" script, attributing the incidence to the operators. 

Emotion-driven response to incidents hampers the efforts to learn from them, because the investigations 

focus on the stakeholders instead of on the design changes needed to improve the resilience. Typically, 

they focus on investigation issues (looking for "bad apples," Dekker, 2007) instead of on improving the 

safety. If a person blames the operators, then it may be the case that this person wants to distract the 

blame, or his/her impotence, to shift it to those who cannot protect themselves. 

The interest of the stakeholders determines whether the decision is rational. In order to guarantee that 

learning from failure is effective, we need to avoid judging the decisions in terms of rationality. In case 

of a costly accident, the stakeholder often focus on looking for a person how may be nominated as 

responsible for the accident. This understandable behavior results in overlooking possible ways to 

prevent similar accidents by redesign.  

Complying with the accountability bias is convenient for safety administrators, because if the operator is 

accountable for the accident, this implies that they are not. The accountability bias distracts the focus 

from the stakeholders, in charge of safety, to the operators, the victims of the design flaw (Jackson and 

Harel, 2018). The problem with this approach is that it inhibits processes of safety improvements. The 

users’ typical response is to think more about their own risks, and less about the interests of the 

organization, or the public. The organization avoids acting to improve safety, because such actions are 

likely to manifest the accountability of the safety administrators (Dekker, 2006). For example, admitting 

the design mistake that cause the Airbus 320 accident in Mulhouse Habsheim in 1988 could have 

prevented the accident in Bangalore, India in 1990 (Casey, 1993). In this case, the safety administrators 

preferred to accuse the pilots instead of exploring the systemic circumstances. Also, accusing members 

of medical teams for accidents due to risky operational procedure is quite common.  

The New View approach is often criticized for encouraging carelessness during the operation, which 

might result in accidents. Safety administrators often apply such reasoning to justify setting the system 

in ways that transfer their investigation to the users, which are risky to the public (Decker, 2007). For 

example, safety administrators are tempted to set alarm thresholds such that the users are overwhelmed 

with irrelevant alarms, in order to reduce the risks of missing alarms when needed.  

In order to assure learning from incidences, we need to know the barriers to learning. The main 

obstacles to improving by learning from accidents are human biases, by the system stakeholders. A 

common practice of organization for coping with the investigation bias is by adopting a safety culture. 

This methodology encourages that investigations should include recommendations for design changes. 
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However, this methodology contradicts the human nature of blaming people. People praise the concept 

of safety culture as long as everything goes according to the plans. In case of mishaps, people typically 

change their strategy, and turn to their natural behavior, of blaming others. 

The IEC 60601-1-8 standard (2006) triggers awareness of the risks involved in using medical alarms, by 

warnings about what might go wrong. However, it does not provide sufficient guidance for how to avoid 

these risks. Insufficient guidance about maintaining “safety culture” results in organizational settings 

that over-protect the authorities, leaving “holes” (in terms of the “Swiss Cheese” model by Reason, 

1990) in the patient safety (Harel, 2011). Barriers to learning from incidences include: 

 Reporting on incidences might suffer from the investigation bias 

 Information extraction might suffer from lack of means for data aggregation 

 Improving the operational procedures might be hampered by the responsible organization 

To enable learning from incidences we need to provide data about the circumstances of the mishap. The 

challenge of proactive investigation in the 4th IR is to develop tools and practices to capture, analyze and 

report about incidences. These practices should consider the investigation bias, and provide defenses 

against it.  

 

Resilience Development 

In the 3rd IR people believed that fixing a design flaw should always improve the system safety. For 

example, Jackson (2009) discusses “a framework for implementation that both public and private 

organizations can use as a guide to establishing procedures for anticipating, surviving, and recovering 

from disruptions.” In reality, this is not always the case. Indeed, Popper (1968) argues that "non-

reproducible single occurrences are of no significance to science. Thus a few stray basic statements 

contradicting a theory will hardly induce us to reject it as falsified. We shall take it as falsified only if 

we discover a reproducible effect which refutes the theory". 

The implication of this observation to engineering is that we can never be sure that adding a safety 

feature is always safe. Unfortunately, after fixing a safety problem, it may happen that the upgraded 

system suffers from a new, latent problem. A famous example is the reliability problem of the PORV 

indicator, which was fixed following a near miss in the Davis Hesse II nuclear power plant in 1978. The 

problem was fixed and the PORV indicator of the upgraded TMI nuclear power plant was more reliable. 

Because it was more reliable, the operators relied on it, even thought it did not function properly. 

In the 4th IR, usability trackers will be embedded in the software delivered, enabling the system 

developers to learn the problems that the operators experience during the operation (Harel, 1999).  

 

15.5 Summary 

This chapter addresses possible changes in the 4th IR relating to the role of human factors in systems 

engineering. The chapter suggests that the 4th IR may involve various shifts towards HMI, associated 

with technology, methodology and HMI thinking and practices. These shift may affect the people 

productivity, quality of life and safety. 
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The main conclusion is that in the 4th IR, HMI needs to evolve into a scientific discipline, offering 

degree programs in universities that teach students the essentials of HMI engineering and interaction 

design. 
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