
Engineering the HSI

Avi Harel

Ergolight

6 Givon Str.

Haifa 3433506, Israel

+972 54 453 4501

ergolight@gmail.com

Avigdor Zonnenshain

Gordon Center for Systems Engineering

Technion

Haifa 32000, Israel

+972 52 289 1773

avigdorz100@gmail.com

ABSTRACT

This article is about ways people may be integrated in

systems and about engineering activities enabling

successful integration. The article proposes a two-layer

model of humans in system integration (HSI) thinking. The

outer layer is about improving the societal impact of the

system, productivity, quality of life and safety. The inner

layer is a framework of HSI engineering, integrating

methodologies and tools used in user centered design

(UCD) with special methodologies and tools proposed for

human machine interaction (HMI) design (HMID). The

goals of HSI engineering may be defined in terms of

performance and reliability, based on a model of the

situation and their transition in system operation. HMID

may focus on preventing, detecting and handling

exceptional situations. The article presents an architecture

applicable to the 4
th

 industrial revolution, for detecting both

predictable and unexpected diversions from routine

operation, as well as for comprehensive, adaptable

exception handling.

Keywords

HSI, HMI, UCD, models, engineering, interaction, design,

exception, architecture.

INTRODUCTION

Case Study

Few years ago we bought a new drier for our home. It had

only few options, and it looked very easy to use. It had few

controls, with nice, clear icons marking the meaning of

these controls. Two of the controls were for time setting:

one for the drying time, the other for delay. We used the

drier occasionally. Then, one day it did not start. We were

about to call a technician to fix the machine. Fortunately,

we noticed just in time that we had set the delay control

instead of the timer. Luckily, we saved the embarrassment

and the costs of unjustified visit of the technician. By the

time the technician would arrive, the delay would have

terminated, and the drier would work perfectly, as

designed.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

HSI2019, September 11-13, 2019, Biarritz, France.

System Integration (SI)

System Integration (SI) is a methodology of Systems

Engineering (SE) for creating a functional system by

integration of non-functional or partly functional system

modules. The focus of SI is on the validation of the

interaction between the modules. The Systems Engineering

Body of Knowledge (SEBoK) classifies this discipline in

the category of specialty engineering, where ‘specialty

engineering’ is “the collection of those narrow disciplines

that are needed to engineer a complete system” ([1]).

Humans in System Integration (HSI)

The concept of HSI emerged with the understanding that an

operational procedure is more than the sum of event-

responses on the way to accomplishing a task.

Traditionally, the human operators were not treated in the

system analysis, specification, design and testing, as parts

of the system. Instead, the relationships between the

operators and the system were according to the client-

server models, where the operators are the clients and the

system is a server. The resulting systems suffered from

problems during the system operation, characterized by

mismatch between the operator’s intention and the system

behavior. HSI is an extension of SI, in which part of the

modules are human operators.

The need for a discipline

Traditionally, systems engineers and software engineers

disregard the ways people might operate the system. We

can learn about the need for a discipline from an early

report about the need for applying engineering disciplines

in software development. The Standish Group analyzed

reasons for the failure of software projects. The conclusion

of this analysis was that there is a huge gap between

software development practices and engineering

disciplines. They demonstrated their finding by

examination of the way engineers manage projects of

building bridges. Beside 3,000 years of experience, there is

another difference between software failures and bridge

failures. “When a bridge falls down, it is investigated and a

report is written on the cause of the failure. This is not so in

the computer industry where failures are covered up,

ignored, and/or rationalized. As a result, we keep making

the same mistakes over and over again” ([15]). This article

proposes a definition of a new discipline, HSI engineering,

intended to avoid repeating interaction failure.

The lacuna

SEBoK includes a list of topics that should be addressed by

an engineering discipline, and a description of each of the

topics as addressed by HSI. Many of the topics of this list,

including discipline management, discipline relationships

with interactions and relationships, discipline standards,

metrics, models, tools, pitfalls, proven practices and other

practical considerations, are pending. Currently, these

topics still are tagged as “Information to be supplied at a

later date” ([1]). The article addresses the lacuna of these

topics, focusing on the interaction between the operators

and the machine.

The scope of HSI design

SEBoK adopts the definition of HSI by ISO/IEC/IEEE

2011, as “an interdisciplinary technical and management

process for integrating human considerations with and

across all system elements, an essential enabler to systems

engineering practice.” The domain considerations include:

“manpower, personnel, training, human factors

engineering, occupational health, environment, safety,

habitability, and human survivability” ([1]). The 4
th

industrial revolution is about a shift in our view of the

effect of technology on our experience of using systems.

The potential impact applies to various kinds of resilience-

critical systems:

 Safety critical systems - where the impact could be

injury, environmental impact etc,

 Performance critical systems where it might impact on

profit, efficiency

 Consumer and entertainment products - frustration,

loss of sales, negative brand image etc.

System Thinking

It is commonly agreed by system scientists that the system

development ought to begin with ‘system thinking’.

According to SEBoK, system thinking is the application of

system sciences to assist in solving real world problems.

Richmond ([12]), the originator of the term, defines

systems thinking as “the art and science of making reliable

inferences about behavior by developing an increasingly

deep understanding of the underlying structure” ([1]).

Human Machine Interaction (HMI)

System operation involves interaction between the human

operators and a machine. In traditional systems engineering

(SE) the human operators are users of the machine. The

users are not part of the system design, and they interact

with the machine via User Interfaces, which also define the

boundaries between the machine and its users.

In the system design we need to consider the capabilities

and limitations of the user, but we need to admit that we

have little effect on their behavior. Therefore, we need to

focus on adapting the machine to the human operators;

accordingly, the subject of the system design is the

machine, not the human operators. This premise is the

motivation for the UCD paradigm ([11]), which

subsequently developed to cognitive engineering and to the

user experience (UX) approach to modern systems.

Traditionally, the HMI is defined in the system

specification. At design time the interaction is expressed in

terms of task-oriented operational procedures. The

operational procedures are defined as sequences of short

event-response sessions, typically independent of each

other, avoiding dealing with the complexity of situation-

dependent activity.

Modeling the HSI

To evaluate the role HSI we need to agree on what makes a

system successful. We may examine case studies of both

good and poor systems from various domains, and we may

apply statistics. Boy suggested that HSI development may

be modeled similarly to the way an orchestra performs

music [2]. The orchestra model compares development

activities with those of the people employed in music

production, such as the composer, the instruments, the

players, the conductor, the audience, etc. This model

emphasizes the channels used for information transfer

between team members, highlighting the similarity between

the function of music notes and that of requirements

specifications.

Modeling the HMI

Traditionally, the common architecture of HMI was based

on concepts borrowed from system design. A simple model

commonly used in UCD proposes that the human activity is

similar to that of the machine. However, in an HMI

framework, the role of the two units is not symmetric. The

human component is regarded as a black box. The

interaction consists of combinations of the asymmetric

architectures. A common practice of describing the

interaction between two hardware units was through a thin

layer, an interface: each of the hardware units is capable of

receiving input from the other unit through the interface,

process the received data locally, and send output to the

other unit, through the interface. This kind of architecture is

described in the following chart:

Figure 1 – low-level interaction

The traditional integration model is one-dimensional, based

on the concept of user interface (UI). Using terms borrowed

from hardware design, the human operator is a master, and

a client, and the system is a slave, and a server. The master-

slave model refers to the control aspect of the interaction,

and the client-server model refers to the display aspect of

the interaction. The interaction between the machine and

the operators is defined in terms of short sessions of event-

response, by a display unit and a control unit:

 The machine gathers data from sensors about the

environment and the machine itself, processes the data

to update and evaluation the system situation, to obtain

measures of performance and risks, and displays

situational information regarding the system state and

performance, environmental conditions, etc. through

the display unit

 The operators enter data and operational parameters,

and invoke their commands using the control unit.

Besides the human operator, other external forces also

affect the machine behavior, through sensors and

algorithms.

The machine behavior is quite predictable, as long as all the

components are reliable; On the other hand, the behavior of

the human operator is less predictable, especially when

applying new artificial intelligence and machine learning

technology. An explanation to this hypothesis is that the

human perception is biased by improper vision, typically

attributed to motivational, training and vigilance factors.

Designing for Rare Situations

Traditionally, it was the operators’ sole duty to deal not

only with any unexpected behavior of the system part. This

did not work: when dealing with rare events, the situation is

typically different from that expected at design time. The

problem with rare situations is that there are so many of

them. Consequently, the designer cannot do anything to

directly affect the operator’s perception of unexpected

situations, or to assist in the decision making. A method for

controlling rare situation, proposed by Zonnenshain and

Harel ([17]) assumes that mishaps are often associated with

difficulties in adapting to the exceptional situation. This

method is based on the System Theoretic Accident Model

and Process (STAMP) paradigm by Leveson, proposing

that the system should control its own behavior [8].

Rule-based Operation

The concept of rule-based operation is based on the idea of

rule-base programming. The idea was introduced by

Colmerauer and Roussel ([4]) and implemented in Prolog, a

declarative programming language, based on first-order

logic. The program logic is expressed in terms of relations,

represented as facts and rules. This concept was adapted

later and applied in Ergolight tools for usability testing. The

adapted concept was of rules for identifying exceptional

operation. These rules enabled detecting user errors by

checking compliance of the operation with special

constraints called Usability Problem Indicators (UPI) ([6,

7]).

It should be noted that while rule-based programming and

testing was proposed for any software design and testing,

the original STAMP paradigm was proposed for accident

prevention ([8]). Yet, the STAMP approach is appropriate

for any resilience-critical system.

Transdisciplinary Collaboration

Sillitto et al. ([14]) have distinguished interdisciplinary

from transdisciplinary. Interdisciplinary has to do with

applying multiple disciplines in parallel and independently,

to accomplish a task. This method is appropriate when the

design considerations in each of the discipline are defined

based on the requirement documents, and they do not

depend on the work being done in the other disciplines.

When the design considerations of any of the disciplines

depends on another discipline, the better way is the

transdisciplinary approach, which “enables inputs and

participation across technical and nontechnical stakeholder

communities and facilitates a systemic way of addressing a

challenge”.

The Risks of Minor Flaws

If we look closely at the interaction of any system, in any

domain, we may realize that they involve many problems,

which we commonly disregard because the effect of each

of them is not significant. We think about these problems

only occasionally, when the costs are significantly high.

Most of the time we accept the flaws because they are part

of a deal: take it or leave it. So, we need to compromise:

we take it, together with the interaction flaws.

The line between success and failure is sometimes very

thin. The same problem of the Pressure Release Operated

Valve (PORV) detected in an incidence of the Davis Basses

nuclear power plant, when repeated in the TMI incidence,

resulted in recession of the whole industry of nuclear power

plants. Also, a mistake of selecting the wrong control,

similar to that of the timer of a home appliance, was a

source for the death of many pilots of the B-17 in WWII. It

should be a design goal to make this line thicker. This goal

may be reached by engineering. Engineering enables

setting design rules and guidelines, with large margins for

failure-free operation.

The Human Side of the Interaction

For the purposes of systems engineering, it is helpful to

consider two aspects of the HSI:

 The task view, in which we examine the ways people

interact with the system

 The capability view, in which we examine physical

and mental capabilities, motivation and limitation of

the human operators, and their effect on performance

and successful operation of the system.

Accordingly, it is helpful to use two distinct views of the

operator: as a system controller and as a system unit. As a

system controller, we are interested in functions:

production, performance, effect, etc. As a system unit, we

are interested in the operator’s ability to make the system

work, and about safety. For example, we want to detect a

situation of a pilot passed out due to G-LOC (g-force

induced loss of consciousness) and activate an Auto-GCAS

(Ground Collision Avoidance System) to stabilize the

airplane and the pilot [5].

As a system controller, the operator can have various roles:

a user, motivated by functions and performance, a

supervisor, motivated by the need to make sure that the

system operates as intended, and a controller, who needs to

manually make the system work. As a system unit, we are

concerned about the operator’s ability to function as a

system controller, which is determined by qualification,

motivation, vigilance, etc.

According to the low-level interaction model, the behavior

of the human operator is subject to three mental activities,

namely situation perception, decision making and

command execution, as described in the low-level HMI

model above. The UCD toolbox offers several models and

methodologies enabling to predict the behavior of operators

in various operational conditions. The design based on

these tools is about ideal behavior, in predicted situations.

For example, the design may assume that the operators

have access to the documents describing troubleshooting

procedures. In practice, however, the operational condition,

operational context, intentions, state of mind and

personality might be different from the expected, and the

operator’s behavior might divert from the prediction. The

operator’s behavior depends on the information they have,

but sometimes critical information is missing or

misleading. Decision making based on the situation

evaluation is biased by improper reasoning, due to vague,

ambiguous task and goal setting, unsuited expectations,

rationality and other personality traits of the human

operator, and also by organizational pressures).

HSI ENGINEERING

The Engineering Chasm

Traditionally, the engineers who define the interaction with

the operators are systems engineers or software engineers.

Typically, they are technology-oriented, which means that

they try their best to integrate state-of-the-art technological

feature. Often, they are feature-oriented, which means that

they include in the design as many features as the

technology allows them to include, regardless of whether or

how the operators will use them. Also, often, they are

designer-centric, which means that optimize the interaction

according to their knowledge about the operational

procedures, and their own preferences. A primary challenge

of system design in the 4
th

 IR is about the people

experience in going through this change. Recently,

usability practitioners discuss challenges of incorporating

human factors in system development. Unfortunately,

systems engineers are not always aware of the benefits of

considering human factors, and usability practitioners fail

to explain their offer. There is a need to bridge this chasm

from both sides. Systems engineers need to understand the

benefits that they can get from incorporating human factors

and usability practitioners need to demonstrate and explain

to systems engineers how to integrate the theories of

cognitive sciences in the system development.

Pitfalls of Traditional HMI Design

In a common architecture used for the HMI design, one of

the two units was the system, and the other was the human

operator. The interaction was through an interface,

consisting of a control unit, enabling sending data and

commands from the human operator to the system, and a

display unit, enabling sending information about the system

state from the system to the operator.

The Engineering View of Errors

The term error is commonly used to divert the

responsibility for the failure of complex systems from the

stakeholders to the people who happened to operate the

system ([4]). .

The engineering view, on the other hand, is very pragmatic.

The idea is that engineers should prevent errors by design,

for mistakes do not happen in a vacuum. Cars and aircrafts

should be equipped with sensors and algorithms enabling

detecting and evaluating the risks of collision, and a means

for automated response, such as by activating an Automatic

Breaking System (ABS). The source for the risky situation,

whether it is the driving, or the driving condition, or any

external hazard, is too complicated to handle, and is

irrelevant to the solution. Therefore, analysis of the human

factors involved in the situation is redundant.

The engineering view is probably the more natural and

pragmatic approach to errors. When your house collapses,

you do not call it an error. You just fix the design problem.

In contrast with the cognitive and the community view,

which attribute the errors to the operators, the engineering

view attributes human errors to the design, which enables

making the error.

When taking the engineering view, we may characterize

system-level attributes of errors, such as information gaps,

scenario ambiguity, mode errors, error-prone controls or

automation biases. It is the design challenge, discussed in

this book, to avoid the failure modes associated with these

attributes.

HSI Thinking

The HSI approach to solving real world problems complies

with the system approach defined by SEBoK as “a set of

principles for applying systems thinking to engineered

system contexts” ([1]). Following Richmond, with system

thinking a system engineer “can see both the forest and the

trees; one eye on each”. Accordingly, we may consider two

aspects of HSI thinking:

 The ‘trees view’ is the internal aspect, about the

functional units integrated with the operators,

collaboration between components of the engineered

system, and

 The ‘forest view’ is the contextual aspect, about the

interaction of the engineered system with the real

world, namely, the customers and stakeholders, as well

as the operational constraints.

Boy ([2]) suggested that system design should be from

purpose to means, from outside-in. According to this

model, the contextual aspect is defined based on

requirements specifications, with respect to the user’s tasks

and capability, and considering forecast of the context.

Also, the internal aspect is defined design considerations

about the various roles of the operators, and their

collaboration with the functional units. The following chart

presents a two layers model of HSI thinking:

Figure 2 – layers of HSI thinking

Agile HSI Thinking

In the early days of systems engineering, system

development followed the waterfall model. According to

this model, the system design is based on the requirement

specifications, which remained unchanged until the version

release. This model did not work very well, because during

the system development new requirements emerge.

Therefore, the waterfall model was replaced by other

models, such as iterative development or agile

development, which facilitated changing the requirements

during the system development. HSI thinking is a

continuous process, integrated with agile development. The

contextual aspect includes sensing the need to change the

requirements and triggering the change. The internal aspect

is the traditional response to changes, typical of agile

development.

FROM THEORY TO PRACTICE

A High-level Model of HMI

As discussed above, the system performance is affected by

attributes of success and failure. Although the rate of

failure is typically low, the effect of failure may be high

due to the high costs. Therefore, a useful model of HMI

should include activities of routine operation and of

operating in exceptional situations. The following chart

describes a model of the transitions between the operational

scenarios:

Figure 3 – exception-oriented modeling

The model shows that the interaction may be in normal

most of the time, when the situation is deterministic. When

the situation is fuzzy, the interaction is liable to end up in

an incidence. When a situation is non-routine, and the

operators do not know about it, the risks are especially high

as explained below:

Interaction Chaos

In chapter 5 “To Err is Human” of his book “The Design of

Everyday Things” (1988) Donald Norman, warned about

the risks of chaos due to user mistakes ([9]). Chaos is a

term we often use to express our perception and feeling

about uncontrolled complexity. Interaction chaos has

several basic forms:

 Situational confusion; fuzzy situations, due to under-

specification of situation dependency, namely, missing

conditions, such as about activity availability

depending on the active scenario

 Situational errors, due to overloading several actions

on the same control

 Over-automation, when the machine might prohibit

necessary operator’s intervention

 Under-automation, when the operators might fail to

manage a exceptional situation

 Missing information, when the operators do not have

the information required to become aware of an

exception, or for deciding how to act, for example, in

response to component failure

 Information ambiguity, when the information

presented to the operators is unclear or confusing, for

example, when the operators do not know how to

respond to an alarm.

In addition, an interaction chaos may involve a

combination of the basic forms.

Exceptions

A machine situation not included in the scope of routine

operation may be regarded as exceptional, deserving

special means to prevent, detect and recover from. Sources

of exceptions that should be considered in the interaction

design include:

 Sync delay (shortcuts, smart selection, popups,)

 Information ambiguity (such as in control selection)

 Chaos (such as of scenario confusion)

 Diversion (such as component failure)

 Mode confusion (assuming the wrong mode)

 Coordination failure (such as due to unit reset)

 Over-automation (such as setting default values)

 Under-automation (such as synchronization delay)

 Specification, design and implementation mistakes

(bugs)

Latent Exceptions

A latent exception is an exceptional situation of which the

operators are not aware. A pseudo routine situation is a

latent exception. Also, if the machine provides an

indication about the exception, but the operators does

notice it, the exception may be regarded as latent. The risks

of latent exceptions are that the operators are not aware of

them.

The machine can handle automatically certain exceptions,

such as operator slips. However, the machine cannot handle

many other exceptions, such as a component failure or

inconsistent system state.

By default, following a diversion from routine operation,

the exceptional situation is latent, which means that by

default, the operators are not aware of the exception. These

might remain latent if the design does not provide a proper

indication about it. The operators may become aware of the

exception only if the machine advertises it. Only then the

operators can be aware of it.

Latent Operational Modes

This source of mode errors is encountered when the system

does not display the operational mode, or when the

operators do not notice it, because it is not visible, or

audible, or because the operators are in stress, etc. An

example is of mode setting by default. If a mode is set by

default, and the system does notify the operators about the

change, they might actuate the wrong function

The Costs of Late Detection

To enable the operators to resolve a problematic situation,

the exception should be detected as early as it is generated.

Unfortunately, when the hazard detection is employing

probe-based, the time elapsed from generation to detection

of the exceptional situation might not leave sufficient time

for the operators to handle the situation. An example is of

disabled backup utility. The exceptional situation of the

backup pump in TMI remained latent until the pump was

called to push coolant from the backup container. This was

too late to enable the immediate cooling required.

Fuzzy Situations

Ideally, all the system requirements are specified in the

requirement document. Practically, much of the

requirements are implicit. People agree on the

requirements, but do not bother to write down all the

details, because they are tedious, and they are obvious. The

problem with the implicit requirements is that at run time,

the operators might miss critical details, such as events of

scenario change. The following table presents a list of

celebrated accidents due to fuzzy situations:

Table 1 – examples of fuzzy rules

In the example of unintentional delay setting above, the

design may avoid the risks of user errors if different

operation procedures were defined for two scenarios:

normal operation and delayed operation. The design could

not avoid the risks, because the two scenarios were not

reflected in the system design. They were defined

implicitly, enabling the user to make the mistake. The

design could prevent the wrong control selection if the

scenario was defined explicitly, and delay control was

disabled in normal use of the appliance. The implication of

this observation to system design is that operational

scenarios should be defined explicitly, and that all the

system units should share the same scenario

Goal Setting

Traditionally, the primary goals of UCD are to leverage

productivity, performance, safety, user satisfaction,

enjoyment, etc. When transforming these properties to the

mental activities described by the low-level interaction

model, the design goals may be stated as: facilitating

reliable perception, decision support and protection from

execution errors. The challenge of HSI engineering is to

enable and guide system developers in designing systems

that consider these factors. Limitations of this model are:

 It is process-oriented, therefore, it does not highlight

the value of the system, in terms of the system goals

 Key factors affecting the system behavior cannot be

controlled automatically, by design. These factors are

marked as clouds in the chart above.

 Poor validity, as there is no practical way to measure

these, or to estimate the direction or magnitude of their

effect.

The implication of this discussion is that the low-level HMI

model may be upgraded, to highlight the role of goals and

performance, and to suggest on ways to protect from failure

by automation.

Design Highlights

The discipline of HSI engineering may involve changes in

the following aspects of the HMI design.

Timing: traditionally, human factors are added ad-hoc to

the system design. This is too late. It is the responsibility of

systems engineers to integrate human factors in the stage or

system analysis and requirements specification.

Time span: traditionally, usability considerations focus on

the stages of marketing and initial operation. It is essential

to extend the scope of usability assurance to the whole life

cycle.

Automation control: a main consideration in HMI design

is the balance between automation and human control. The

new discipline will propose guidelines for collaboration

design, optimizes for maximal performance and minimal

risks.

Failure analysis: Traditionally, failure prevention is based

on root-cause analysis. Such analysis does not support

coping with the unexpected and proposes developing rule-

based protection. Rebounding from operator’s slip should

be integrated in the system design. The new discipline

proposes that applying new methodologies for structured

rebounding.

Error tolerance: a common practice in system design is to

apply means for fault tolerance. Traditionally, systems

engineers do not apply such means for protection from

operator’s errors. The new discipline proposes applying a

model and means for preventing operator’s errors.

Extended exception handling: traditionally, interaction

design focuses on procedures of normal operation.

However, system failure involves difficulties in operating

in exceptional situations. Applying golden rules applicable

to normal operation, as proposed by Shneiderman ([13]),

might hamper the interaction in exceptional situations. It is

about time to expand the HMI design practices, such as of

deciding on interaction styles, to also support exception

detection, troubleshooting, recovery and emergency

operation.

Modeling the HMI: a common practice for UI design is in

terms of event-response. The new discipline considers

typical sources of unexpected diversion, advocates

scenario-based interaction styles and applies rule-based

procedure-oriented definition.

Human-machine collaboration: the new discipline

proposes a new model of human-machine collaboration,

enabling to cope with the exceptions. Also, it proposes that

the implementation should be based on protocols

describing proper interaction, which will enable diversion

detection. Special safe-mode operational procedures are

essential to deal with the unexpected in emergency.

Situation awareness: Norman noted that a primary source

for system failure is the lack of information required for

situation awareness ([10]). A key related problem is of

attention distraction due information overload, and the role

of nuisance alarms. The new discipline proposes to develop

a means for assessing the effect of various S/N ratio of

notifications and alerts.

Incidence investigation: traditionally, system failure is

attributed to the operator. The new discipline encourages

radical changes in system thinking, to mitigate the risk of

common biases in interaction design and to enable learning

from mishaps. These changes should be accompanied by

technological advances, including activity trackers and

analyzers, based on data mining technology.

Glossary: various industry domains use specific terms for

common attributes of HMI. The new discipline propose a

glossary that may enable engineers of the different domains

speak using the same language.

Formalizing the Machine Behavior

To implement the concept of self control, we need to define

the data that the situation analyzer will use to decide

whether the situation is routine or exceptional. The data

used by the situation analyzer is a representation of the

machine behavior, in terms of situation changes. Expected

behavior may be defined by protocols of operational

procedures, and of inter-unit compliance. For example, a

protocol for operating a delay feature of a home appliance

may include a condition that this procedure is available

only when the machine assumes operating in a normal

scenario. Also, a protocol for compliance between a safety-

critical unit and a safety feature, such as a backup unit, may

be that both units share the same scenario.

The machine situation may be formalized as a collection of

the active states of state machines, each of which represents

a protocol. Critical components may be associated with

primary state machines, representing their availability,

On/Off condition, Enabled/Disabled condition, and

functional state.

Design Practices

Practices for exception prevention

Practices for exception prevention include:

 User centered design (UCD)

 Applying fuzzy logic for slip and delay detection

 Applying STAMP principle of self control

 Standard protocols obtained from standard operational

rules

 Formalizing the system activity in terms of state

machines

 Ongoing risk information, obtained by risk indicators

 Rules for balancing automation with manual control

Practices for exception detection

Risk Indicators: To detect risky situations, the machine

may be equipped with sensors. For example, each

component may be equipped with a sensor indicating its

primary states.

Indirect risk indicators: Additional risk indicators may be

applied to warn about hazards and threat not detected by

direct sensors of component primary states.

Escalation indicators: special risk indicators, based on

auxiliary sensors. For example, a thermometer may indicate

hazards of uncontrolled overheating, and threats of extreme

temperatures.

UPIs: special risk indicator used to detect situations of the

operator’s confusion ([6]). Statistical UPIs enable detection

or usability flaws in website design ([7]). Such indicators

were demonstrated in Ergolight toolkit for usability testing.

Practices of exception handling

Traditional exception handlers used in software design are

of limited effect in HMI design. The essentials of HMI-

oriented exception handling include:

Exception detection

 Expected exceptions, by root-cause analysis

 Unexpected exceptions, by searching the design scope

 Risk indicators

 Detectability, by implementing the scenarios and states

Alarm control

 By statistics of alarm S/N

Troubleshooting

 By dynamic root-cause analysis

Integration

The classical HMI model presented above describes short

event-response sessions. It is low level. It does not show

how the machine and the operators are engaged in solving

high-level issues, such as human-machine control

allocation, scenario sharing, detecting deviations from

routine operation, troubleshooting, detecting unexpected

situations etc. The following figure illustrates a way to

implement the STAMP paradigm.

Figure 4 – integration

Human-Machine Collaboration (HMC)

The HMC model assumes that the quality of the operators’

decision depends on the perception of the situation in

general, and of exceptional situations in particular.

Accordingly, the model focuses on avoiding, rebounding

and recovery from exceptional situations. Critical factors,

not controlled in implementations based on the classical

model (above), are controlled in implementations based on

the new model.

The Situation Analyzer

The situation analyzer traces the situation changes, based

on sensory data received from the system, the operator and

the environment. The new situation is tested with respect to

a model of normal machine behavior, and classified as

routine, exceptional or unexpected. The analyzer informs

the operators about the non-routine activity, and sets the

HMI style according to the category of the situation.

The situation analyzer has two features:

 It checks the compliance of the machine situation

changes, as represented in the shadow, and provides

warning in case of protocol violation.

 It checks the compliance of the operator’s action with

the shadow, according to the protocols, provides

preview information to the operators about the

potential effect of their action, and provides

notifications and warnings in case of protocol

violation.

For example, in the case study of the unintentional delay of

a home appliance, the system may operate in two scenarios:

normal operation and delayed operation. The delay timer

may be available in the delayed operation, but not in the

normal operation. The situation analyzer has this rule

stored in the knowledge base. Accordingly, the analyzer

may disable the delay control when operating in normal

operation, or at least warn the users when they try the delay

control in normal operation.

The Automation Controller

An automation controller unit monitors the automation

according to the situation, enabling the operator to override

the automated system control, and enabling the system to

override improper operator’s commands. It receives

information from the situation analyzer about the next

activity, and transforms the information to actionable

information for the operators and the machine. When the

situation received from the analyzer is of a routine scenario,

the automation controller allocates the control to human

operator and to the machine based on predefined rules,

enabling the human operators to supervise the execution by

the machine. When the situation is exceptional, the

machine may have a more active role, providing warnings

and indications of the system situation. In emergency, the

machine may have an even more active role, initiating

emergency evacuation procedures, and disabling risky

operator’s activity, by rules of safe-mode operation.

The Operator Interface (OI)

The OI may consist of dedicated control stations, used for

distinct operator’s roles and situations. In a recommended

architecture, different stations to are assigned to distinct

operational tasks:

 Primary station - for managing the interaction in

routine operational conditions

 Recovery station - for managing the interaction in

exceptional operational conditions. The operator’s

primary task is troubleshooting

 Rescue station - for managing the interaction in

emergency, due to unexpected operational conditions

 Supervision station - for managing the interaction

when performing the top-level tasks, and for managing

the interaction during hazard detection

Because the mental mode is not the same for the different

roles, the interaction style should also not be the same. For

example, in the design of the primary and the supervision

station we may assume that the operators may be trained to

learn the access to the various features, and to respond

properly to events. Such assumption is not valid for

recovery and rescue stations, in which we should assume

that the operators did not see the interfaces beforehand, and

they need the machine support for learning how to respond

and behave. Another example is the special attention to the

possibility of tunnel vision in the design of the rescue

station, because people are more prone to this effect in

emergency.

Testability of exceptional situations

It is unlikely that in testing normal operation we may

encounter all critical exceptional situations, unless we fake

these situations.

The validation procedures applied in traditional SI sessions

do not target the interaction between the users and the

system. Subsequent to the SI, the validation of the

interaction between the users and the machine are

conducted in special sessions of task-oriented usability

testing, practiced by usability professionals, applying

practices which are traditionally out of the scope of SE.

These practices are most effective in validating routine

operational procedures, but they are short of detecting rare

events, and of identifying unexpected situations. In the

framework of HSI, the validation of the interaction between

the human operators and the machine modules (HMI) is

embedded in the SI procedures, enabling validating also

rare events and unexpected situations.

The architecture used for the HMID should include means

to fake and control exceptions efficiently, including a

dedicated test station and means to bypass the actual

machine situation. As an integral part of the project, a

special interaction control unit should be developed, to

enable simulation of rare event, such as hardware fault, for

the validation testing.

Alarm Control

A primary source of operational errors is due to improper

adjusting the thresholds that determine the transition to

notification and to alarming. Special statistics may be

employed to evaluate the rate of nuisance, and to compare

the risks of nuisance with those of missed alarms. Special

means, including an alarm control, may enable evaluating

the risks and adjusting these thresholds.

The New Discipline

The discipline of HSI addresses the cooperation and

collaboration between the disciplines. Hence, using

engineering, psychology, and human factors together

constitutes a transdisciplinary science. Unfortunately, these

works did not mature yet to an engineering discipline.

The way systems engineers implement their part in the

collaboration is by ‘system thinking’. The way usability

practitioners implement their part is by methodologies of

UCD. The following chart illustrates the location of the

new discipline of interaction design as a mediator between

SE and UCD:

Figure 5 – transdisciplinary coordination in HMI design

The bridge that will enable crossing the chasm should be

built using new methodologies about the way we define the

interaction between the human operator and the machine.

The transdisciplinary framework proposed here may enable

to bridge the chasm between the SE and HF.

HSI development

HSI development includes special activities added to

traditional system development. A waterfall model

describing HSI development is depicted in the following

chart:

Figure 6 – HSI development

The left side of the chart is an enhanced version of the

traditional waterfall model. The major enhancements are

about the system architecture, the interaction design and the

integration testing. The right side of the chart is a waterfall

of design topics in HSI, across the various development

stages. Most notable are the model-based goal setting,

alarm design and troubleshooting design.

The Roles of HSI Engineers

The job of the HSI engineer is to manage the design and

testing of the operational procedures used to handle all

possible situations and events. The roles of HSI engineers

are depicted in chart above. The solid lines refer to major

responsibilities of the HSI engineer.

The HSI engineer is a coordinator between the

technologists, the usability practitioners and the software

engineers who implement the programs. Specifically, the

HSI engineers are in charge of deciding what sensors

should be installed to inform the system about its state.

Also, the HSI engineers need to supply the usability

practitioners with the information they need to have in

order to be aware of the situation.

In order to enable the design and testing of the HSI in a

project the HSI engineer may need to do the following:

 At the stage of defining the design concept, set the

design goals, including performance and reliability

attributes, based on the HMI model.

 At the stage of requirements specification,

o Define the operational scenarios and the machine

states in the system documents, and represent

them in the project knowledge base, used for the

situation analysis

o Specify the requirements for integrating the

knowledge base in order to implement the

situation analyzer

 At the top-level design of the system normal behavior,

define the actions applicable to the different system

states, and represent them in the project database

 At the stage of failure analysis, specify the various

expected deviations from normal operational

conditions in the system documents, including the

maximal response time that will be used as thresholds

for safe recovery, and represent them in the project

database

 At the stage of interaction design, specify:
o The human-machine task allocation in the various

scenarios

o The sensors available in the project, what they

measure, and their association with the various

expected deviations, including virtual sensors,

namely, computed measures used for indirect

deviation detection

 At the stage of exception definition, specify the alert

and notification thresholds, and the safety thresholds

for the sensory data, including:

o Attributes, such as modality, intensity, desired

effect for the various addressees

o Preferred/default operators’ response for each of

the alerts/ notifications

o Define procedures for optimizing the thresholds

used in the various risk indicators

o Secondary risks of failure of the alarm system

o Procedures for identifying the secondary

diversions

 At the stage of test design, specify:

o The requirements from a test controller, a special

unit used to simulate rare events, such as

component faults, for the testing

o The method for optimizing the thresholds used in

risk indicators.
CONCLUSIONS

HSI engineering is primarily about HMI design and testing.

In order to ensure long-term high performance, the design

should focus on enforcing operational reliability. A main

conclusion from the complexity and variety of related

considerations and methods is that in the 4
th

 industrial

revolution the theory of HSI engineering should evolve to a

sub discipline of systems engineering. The 4
th

 industrial

revolution may involve various shifts towards HMI,

associated with technology, methodology and HMI

thinking and practices. These shifts may affect the people

productivity, quality of life and safety. The new discipline

may be based on scientific foundations, which may require,

high degree in universities. The discussion above suggests

that the focus of these studies will be on HMI design,

testing and optimization.

REFERENCES

1. BKCASE Editorial Board. 2017. The Guide to the

Systems Engineering Body of Knowledge (SEBoK), v.

1.9.1 R.J. Cloutier (Editor in Chief). Hoboken, NJ: The

Trustees of the Stevens Institute of Technology.

Accessed DATE. www.sebokwiki.org. BKCASE is

managed and maintained by the Stevens Institute of

Technology Systems Engineering Research Center, the

International Council on Systems Engineering, and the

Institute of Electrical and Electronics Engineers

Computer Society.

2. Boy, G.A. Orchestrating Human-Centered Design. New

York: Springer, 2013. ISBN 978-1-4471-4338-3

3. Colmerauer, A. & Roussel, P., The birth of Prolog

(PDF). ACM SIGPLAN Notices. 28 (3): 37. 1993,

doi:10.1145/155360.155362

4. Dekker, S. Just Culture: Balancing Safety and

Accountability. CRC Press, ISBN 9781409440604,

2007,

5. Dockrill, P. WATCH: F-16 Autopilot System Saves The

Life of an Unconscious Fighter Pilot, Science Alert, 14

Sept. 2016.

6. Harel, A., 1999. Automatic Operation Logging and

Usability Validation, Proceedings of HCI International

'99, Munich, Germany, Vol. 1, pp. 1128-1133

7. Harel, A., Kenett, R.S. and Ruggeri, F., Modeling Web

Usability Diagnostics on the basis of Usage Statistics, in

Statistical Methods in eCommerce Research, ed. W.

Jank and G. Shmueli, Wiley, 2008, pp. 131—172.

8. Leveson, N.G. A New Accident Model for Engineering

Safer Systems, Safety Science, 2004, Vol. 42, No. 4, pp.

237-270.

9. Norman, D.A., The Design of Everyday Things, 1988,

ISBN 978-0-465-06710-7

10. Norman, D.A. The "problem" of automation:

Inappropriate feedback and interaction, not "over-

automation". In D. E. Broadbent, A. Baddeley & J. T.

Reason (Eds.), Human factors in hazardous situations

(pp. 585-593). Oxford: Oxford University Press, 1990

11. Norman, D.A. & Draper, S.W. User Centered System

Design; New Perspectives on Human-Computer

Interaction, L. Erlbaum Associates Inc. Hillsdale, NJ,

USA, 1986 ISBN:0898597811

12. Richmond, B. Systems Dynamics/Systems Thinking:

Let’s Just Get On With It. In, International Systems

Dynamics Conference. Sterling, Scotland, 1994.

13. Shneiderman, B. Designing the user interface:

strategies for effective human-computer interaction,

Reading, MA: Addison-Wesley, 1987.

14. Sillitto, H.G., Martin J., Griego R., McKinney, D.,

Arnold, E., Godfrey, P., Dori, D., Krob, D. and Jackson,

S. Envisioning Systems Engineering as a

Transdisciplinary Venture. IS 2018, Washington, DC.

15. Standish Group. The COMPASS report, Forbes, 1995.

16. Weinberg, G.M., 1971. The Psychology of Computer

Programming. New York, Dorset House Publishing.

17. Zonnenshain, A. & Harel, A. INCOSE Annual

International Symposium, Seattle, 2015

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4471-4338-3
http://alain.colmerauer.free.fr/alcol/ArchivesPublications/PrologHistory/19november92.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%2F155360.155362
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470120126,descCd-tableOfContents.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470120126,descCd-tableOfContents.html

