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ABSTRACT 

This article is about ways people may be integrated in 

systems and about engineering activities enabling 

successful integration. The article proposes a two-layer 

model of humans in system integration (HSI) thinking. The 

outer layer is about improving the societal impact of the 

system, productivity, quality of life and safety. The inner 

layer is a framework of HSI engineering, integrating 

methodologies and tools used in user centered design 

(UCD) with special methodologies and tools proposed for 

human machine interaction (HMI) design (HMID). The 

goals of HSI engineering may be defined in terms of 

performance and reliability, based on a model of the 

situation and their transition in system operation. HMID 

may focus on preventing, detecting and handling 

exceptional situations. The article presents an architecture 

applicable to the 4
th

 industrial revolution, for detecting both 

predictable and unexpected diversions from routine 

operation, as well as for comprehensive, adaptable 

exception handling. 
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INTRODUCTION 

Case Study 

Few years ago we bought a new drier for our home. It had 

only few options, and it looked very easy to use. It had few 

controls, with nice, clear icons marking the meaning of 

these controls. Two of the controls were for time setting: 

one for the drying time, the other for delay. We used the 

drier occasionally. Then, one day it did not start. We were 

about to call a technician to fix the machine. Fortunately, 

we noticed just in time that we had set the delay control 

instead of the timer. Luckily, we saved the embarrassment 

and the costs of unjustified visit of the technician. By the 

time the technician would arrive, the delay would have 

terminated, and the drier would work perfectly, as 

designed. 
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System Integration (SI) 

System Integration (SI) is a methodology of Systems 

Engineering (SE) for creating a functional system by 

integration of non-functional or partly functional system 

modules. The focus of SI is on the validation of the 

interaction between the modules. The Systems Engineering 

Body of Knowledge (SEBoK) classifies this discipline in 

the category of specialty engineering, where ‘specialty 

engineering’ is “the collection of those narrow disciplines 

that are needed to engineer a complete system” ([1]). 

Humans in System Integration (HSI) 

The concept of HSI emerged with the understanding that an 

operational procedure is more than the sum of event-

responses on the way to accomplishing a task.  

Traditionally, the human operators were not treated in the 

system analysis, specification, design and testing, as parts 

of the system. Instead, the relationships between the 

operators and the system were according to the client-

server models, where the operators are the clients and the 

system is a server. The resulting systems suffered from 

problems during the system operation, characterized by 

mismatch between the operator’s intention and the system 

behavior. HSI is an extension of SI, in which part of the 

modules are human operators.  

The need for a discipline 

Traditionally, systems engineers and software engineers 

disregard the ways people might operate the system. We 

can learn about the need for a discipline from an early 

report about the need for applying engineering disciplines 

in software development. The Standish Group analyzed 

reasons for the failure of software projects. The conclusion 

of this analysis was that there is a huge gap between 

software development practices and engineering 

disciplines. They demonstrated their finding by 

examination of the way engineers manage projects of 

building bridges. Beside 3,000 years of experience, there is 

another difference between software failures and bridge 

failures. “When a bridge falls down, it is investigated and a 

report is written on the cause of the failure. This is not so in 

the computer industry where failures are covered up, 

ignored, and/or rationalized. As a result, we keep making 

the same mistakes over and over again” ([15]). This article 

proposes a definition of a new discipline, HSI engineering, 

intended to avoid repeating interaction failure. 



The lacuna 

SEBoK includes a list of topics that should be addressed by 

an engineering discipline, and a description of each of the 

topics as addressed by HSI. Many of the topics of this list, 

including discipline management, discipline relationships 

with interactions and relationships, discipline standards, 

metrics, models, tools, pitfalls, proven practices and other 

practical considerations, are pending. Currently, these 

topics still are tagged as “Information to be supplied at a 

later date” ([1]). The article addresses the lacuna of these 

topics, focusing on the interaction between the operators 

and the machine.  

The scope of HSI design 

SEBoK adopts the definition of HSI by ISO/IEC/IEEE 

2011, as “an interdisciplinary technical and management 

process for integrating human considerations with and 

across all system elements, an essential enabler to systems 

engineering practice.” The domain considerations include: 

“manpower, personnel, training, human factors 

engineering, occupational health, environment, safety, 

habitability, and human survivability” ([1]). The 4
th

 

industrial revolution is about a shift in our view of the 

effect of technology on our experience of using systems. 

The potential impact applies to various kinds of resilience-

critical systems: 

 Safety critical systems - where the impact could be 

injury, environmental impact etc,  

 Performance critical systems where it might impact on 

profit, efficiency 

 Consumer and entertainment products - frustration, 

loss of sales, negative brand image etc. 

System Thinking 

It is commonly agreed by system scientists that the system 

development ought to begin with ‘system thinking’. 

According to SEBoK, system thinking is the application of 

system sciences to assist in solving real world problems.  

Richmond ([12]), the originator of the term, defines 

systems thinking as “the art and science of making reliable 

inferences about behavior by developing an increasingly 

deep understanding of the underlying structure” ([1]).  

Human Machine Interaction (HMI) 

System operation involves interaction between the human 

operators and a machine. In traditional systems engineering 

(SE) the human operators are users of the machine. The 

users are not part of the system design, and they interact 

with the machine via User Interfaces, which also define the 

boundaries between the machine and its users.  

In the system design we need to consider the capabilities 

and limitations of the user, but we need to admit that we 

have little effect on their behavior. Therefore, we need to 

focus on adapting the machine to the human operators; 

accordingly, the subject of the system design is the 

machine, not the human operators. This premise is the 

motivation for the UCD paradigm ([11]), which 

subsequently developed to cognitive engineering and to the 

user experience (UX) approach to modern systems. 

Traditionally, the HMI is defined in the system 

specification. At design time the interaction is expressed in 

terms of task-oriented operational procedures. The 

operational procedures are defined as sequences of short 

event-response sessions, typically independent of each 

other, avoiding dealing with the complexity of situation-

dependent activity. 

Modeling the HSI  

To evaluate the role HSI we need to agree on what makes a 

system successful. We may examine case studies of both 

good and poor systems from various domains, and we may 

apply statistics. Boy suggested that HSI development may 

be modeled similarly to the way an orchestra performs 

music [2]. The orchestra model compares development 

activities with those of the people employed in music 

production, such as the composer, the instruments, the 

players, the conductor, the audience, etc. This model 

emphasizes the channels used for information transfer 

between team members, highlighting the similarity between 

the function of music notes and that of requirements 

specifications.  

Modeling the HMI 

Traditionally, the common architecture of HMI was based 

on concepts borrowed from system design. A simple model 

commonly used in UCD proposes that the human activity is 

similar to that of the machine. However, in an HMI 

framework, the role of the two units is not symmetric. The 

human component is regarded as a black box. The 

interaction consists of combinations of the asymmetric 

architectures. A common practice of describing the 

interaction between two hardware units was through a thin 

layer, an interface: each of the hardware units is capable of 

receiving input from the other unit through the interface, 

process the received data locally, and send output to the 

other unit, through the interface. This kind of architecture is 

described in the following chart: 

  

Figure 1 – low-level interaction 

The traditional integration model is one-dimensional, based 

on the concept of user interface (UI). Using terms borrowed 

from hardware design, the human operator is a master, and 

a client, and the system is a slave, and a server. The master-

slave model refers to the control aspect of the interaction, 

and the client-server model refers to the display aspect of 

the interaction. The interaction between the machine and 



the operators is defined in terms of short sessions of event-

response, by a display unit and a control unit:  

 The machine gathers data from sensors about the 

environment and the machine itself, processes the data 

to update and evaluation the system situation, to obtain 

measures of performance and risks, and displays 

situational information regarding the system state and 

performance, environmental conditions, etc. through 

the display unit 

 The operators enter data and operational parameters, 

and invoke their commands using the control unit.  

Besides the human operator, other external forces also 

affect the machine behavior, through sensors and 

algorithms.  

The machine behavior is quite predictable, as long as all the 

components are reliable; On the other hand, the behavior of 

the human operator is less predictable, especially when 

applying new artificial intelligence and machine learning 

technology. An explanation to this hypothesis is that the 

human perception is biased by improper vision, typically 

attributed to motivational, training and vigilance factors.  

Designing for Rare Situations  

Traditionally, it was the operators’ sole duty to deal not 

only with any unexpected behavior of the system part. This 

did not work: when dealing with rare events, the situation is 

typically different from that expected at design time. The 

problem with rare situations is that there are so many of 

them. Consequently, the designer cannot do anything to 

directly affect the operator’s perception of unexpected 

situations, or to assist in the decision making. A method for 

controlling rare situation, proposed by Zonnenshain and 

Harel ([17]) assumes that mishaps are often associated with 

difficulties in adapting to the exceptional situation. This 

method is based on the System Theoretic Accident Model 

and Process (STAMP) paradigm by Leveson, proposing 

that the system should control its own behavior [8].  

Rule-based Operation 

The concept of rule-based operation is based on the idea of 

rule-base programming. The idea was introduced by 

Colmerauer and Roussel ([4]) and implemented in Prolog, a 

declarative programming language, based on first-order 

logic. The program logic is expressed in terms of relations, 

represented as facts and rules. This concept was adapted 

later and applied in Ergolight tools for usability testing. The 

adapted concept was of rules for identifying exceptional 

operation. These rules enabled detecting user errors by 

checking compliance of the operation with special 

constraints called Usability Problem Indicators (UPI) ([6, 

7]). 

It should be noted that while rule-based programming and 

testing was proposed for any software design and testing, 

the original STAMP paradigm was proposed for accident 

prevention ([8]). Yet, the STAMP approach is appropriate 

for any resilience-critical system. 

Transdisciplinary Collaboration 

Sillitto et al. ([14]) have distinguished interdisciplinary 

from transdisciplinary. Interdisciplinary has to do with 

applying multiple disciplines in parallel and independently, 

to accomplish a task. This method is appropriate when the 

design considerations in each of the discipline are defined 

based on the requirement documents, and they do not 

depend on the work being done in the other disciplines. 

When the design considerations of any of the disciplines 

depends on another discipline, the better way is the 

transdisciplinary approach, which “enables inputs and 

participation across technical and nontechnical stakeholder 

communities and facilitates a systemic way of addressing a 

challenge”.  

The Risks of Minor Flaws   

If we look closely at the interaction of any system, in any 

domain, we may realize that they involve many problems, 

which we commonly disregard because the effect of each 

of them is not significant. We think about these problems 

only occasionally, when the costs are significantly high. 

Most of the time we accept the flaws because they are part 

of a deal: take it or leave it. So, we need to compromise:  

we take it, together with the interaction flaws.   

The line between success and failure is sometimes very 

thin. The same problem of the Pressure Release Operated 

Valve (PORV) detected in an incidence of the Davis Basses 

nuclear power plant, when repeated in the TMI incidence, 

resulted in recession of the whole industry of nuclear power 

plants. Also, a mistake of selecting the wrong control, 

similar to that of the timer of a home appliance, was a 

source for the death of many pilots of the B-17 in WWII. It 

should be a design goal to make this line thicker. This goal 

may be reached by engineering. Engineering enables 

setting design rules and guidelines, with large margins for 

failure-free operation. 

The Human Side of the Interaction  

For the purposes of systems engineering, it is helpful to 

consider two aspects of the HSI: 

 The task view, in which we examine the ways people 

interact with the system 

 The capability view, in which we examine physical 

and mental capabilities, motivation and limitation of 

the human operators, and their effect on performance 

and successful operation of the system. 

Accordingly, it is helpful to use two distinct views of the 

operator: as a system controller and as a system unit. As a 

system controller, we are interested in functions: 

production, performance, effect, etc. As a system unit, we 

are interested in the operator’s ability to make the system 

work, and about safety. For example, we want to detect a 

situation of a pilot passed out due to G-LOC (g-force 

induced loss of consciousness) and activate an Auto-GCAS 

(Ground Collision Avoidance System) to stabilize the 

airplane and the pilot [5].  

As a system controller, the operator can have various roles: 

a user, motivated by functions and performance, a 



supervisor, motivated by the need to make sure that the 

system operates as intended, and a controller, who needs to 

manually make the system work. As a system unit, we are 

concerned about the operator’s ability to function as a 

system controller, which is determined by qualification, 

motivation, vigilance, etc. 

According to the low-level interaction model, the behavior 

of the human operator is subject to three mental activities, 

namely situation perception, decision making and 

command execution, as described in the low-level HMI 

model above. The UCD toolbox offers several models and 

methodologies enabling to predict the behavior of operators 

in various operational conditions. The design based on 

these tools is about ideal behavior, in predicted situations. 

For example, the design may assume that the operators 

have access to the documents describing troubleshooting 

procedures. In practice, however, the operational condition, 

operational context, intentions, state of mind and 

personality might be different from the expected, and the 

operator’s behavior might divert from the prediction. The 

operator’s behavior depends on the information they have, 

but sometimes critical information is missing or 

misleading. Decision making based on the situation 

evaluation is biased by improper reasoning, due to vague, 

ambiguous task and goal setting, unsuited expectations, 

rationality and other personality traits of the human 

operator, and also by organizational pressures). 

HSI ENGINEERING 

The Engineering Chasm  

Traditionally, the engineers who define the interaction with 

the operators are systems engineers or software engineers. 

Typically, they are technology-oriented, which means that 

they try their best to integrate state-of-the-art technological 

feature. Often, they are feature-oriented, which means that 

they include in the design as many features as the 

technology allows them to include, regardless of whether or 

how the operators will use them. Also, often, they are 

designer-centric, which means that optimize the interaction 

according to their knowledge about the operational 

procedures, and their own preferences. A primary challenge 

of system design in the 4
th

 IR is about the people 

experience in going through this change. Recently, 

usability practitioners discuss challenges of incorporating 

human factors in system development. Unfortunately, 

systems engineers are not always aware of the benefits of 

considering human factors, and usability practitioners fail 

to explain their offer. There is a need to bridge this chasm 

from both sides. Systems engineers need to understand the 

benefits that they can get from incorporating human factors 

and usability practitioners need to demonstrate and explain 

to systems engineers how to integrate the theories of 

cognitive sciences in the system development.  

Pitfalls of Traditional HMI Design  

In a common architecture used for the HMI design, one of 

the two units was the system, and the other was the human 

operator. The interaction was through an interface, 

consisting of a control unit, enabling sending data and 

commands from the human operator to the system, and a 

display unit, enabling sending information about the system 

state from the system to the operator.  

The Engineering View of Errors 

The term error is commonly used to divert the 

responsibility for the failure of complex systems from the 

stakeholders to the people who happened to operate the 

system ([4]). .  

The engineering view, on the other hand, is very pragmatic. 

The idea is that engineers should prevent errors by design, 

for mistakes do not happen in a vacuum. Cars and aircrafts 

should be equipped with sensors and algorithms enabling 

detecting and evaluating the risks of collision, and a means 

for automated response, such as by activating an Automatic 

Breaking System (ABS). The source for the risky situation, 

whether it is the driving, or the driving condition, or any 

external hazard, is too complicated to handle, and is 

irrelevant to the solution. Therefore, analysis of the human 

factors involved in the situation is redundant.  

The engineering view is probably the more natural and 

pragmatic approach to errors. When your house collapses, 

you do not call it an error. You just fix the design problem. 

In contrast with the cognitive and the community view, 

which attribute the errors to the operators, the engineering 

view attributes human errors to the design, which enables 

making the error.  

When taking the engineering view, we may characterize 

system-level attributes of errors, such as information gaps, 

scenario ambiguity, mode errors, error-prone controls or 

automation biases. It is the design challenge, discussed in 

this book, to avoid the failure modes associated with these 

attributes. 

HSI Thinking 

The HSI approach to solving real world problems complies 

with the system approach defined by SEBoK as “a set of 

principles for applying systems thinking to engineered 

system contexts” ([1]). Following Richmond, with system 

thinking a system engineer “can see both the forest and the 

trees; one eye on each”. Accordingly, we may consider two 

aspects of HSI thinking:  

 The ‘trees view’ is the internal aspect, about the 

functional units integrated with the operators, 

collaboration between components of the engineered 

system, and  

 The ‘forest view’ is the contextual aspect, about the 

interaction of the engineered system with the real 

world, namely, the customers and stakeholders, as well 

as the operational constraints.  

Boy ([2]) suggested that system design should be from 

purpose to means, from outside-in. According to this 

model, the contextual aspect is defined based on 

requirements specifications, with respect to the user’s tasks 

and capability, and considering forecast of the context. 

Also, the internal aspect is defined design considerations 

about the various roles of the operators, and their 



collaboration with the functional units. The following chart 

presents a two layers model of HSI thinking: 

 

Figure 2 – layers of HSI thinking 

Agile HSI Thinking 

In the early days of systems engineering, system 

development followed the waterfall model. According to 

this model, the system design is based on the requirement 

specifications, which remained unchanged until the version 

release. This model did not work very well, because during 

the system development new requirements emerge. 

Therefore, the waterfall model was replaced by other 

models, such as iterative development or agile 

development, which facilitated changing the requirements 

during the system development. HSI thinking is a 

continuous process, integrated with agile development. The 

contextual aspect includes sensing the need to change the 

requirements and triggering the change. The internal aspect 

is the traditional response to changes, typical of agile 

development. 

FROM THEORY TO PRACTICE 

A High-level Model of HMI 

As discussed above, the system performance is affected by 

attributes of success and failure. Although the rate of 

failure is typically low, the effect of failure may be high 

due to the high costs. Therefore, a useful model of HMI 

should include activities of routine operation and of 

operating in exceptional situations. The following chart 

describes a model of the transitions between the operational 

scenarios: 

 

Figure 3 – exception-oriented modeling 

The model shows that the interaction may be in normal 

most of the time, when the situation is deterministic. When 

the situation is fuzzy, the interaction is liable to end up in 

an incidence. When a situation is non-routine, and the 

operators do not know about it, the risks are especially high 

as explained below: 

Interaction Chaos 

In chapter 5 “To Err is Human” of his book “The Design of 

Everyday Things” (1988) Donald Norman, warned about 

the risks of chaos due to user mistakes ([9]). Chaos is a 

term we often use to express our perception and feeling 

about uncontrolled complexity. Interaction chaos has 

several basic forms: 

 Situational confusion; fuzzy situations, due to under-

specification of situation dependency, namely, missing 

conditions, such as about activity availability 

depending on the active scenario 

 Situational errors, due to overloading several actions 

on the same control 

 Over-automation, when the machine might prohibit 

necessary operator’s intervention 

 Under-automation, when the operators might fail to 

manage a exceptional situation 

 Missing information, when the operators do not have 

the information required to become aware of an 

exception, or for deciding how to act, for example, in 

response to component failure 

 Information ambiguity, when the information 

presented to the operators is unclear or confusing, for 

example, when the operators do not know how to 

respond to an alarm.  

In addition, an interaction chaos may involve a 

combination of the basic forms. 

Exceptions 

A machine situation not included in the scope of routine 

operation may be regarded as exceptional, deserving 

special means to prevent, detect and recover from. Sources 

of exceptions that should be considered in the interaction 

design include: 

 Sync delay (shortcuts, smart selection, popups, )  

 Information ambiguity (such as in control selection) 

 Chaos (such as of scenario confusion) 

 Diversion (such as component failure) 

 Mode confusion (assuming the wrong mode) 

 Coordination failure (such as due to unit reset) 

 Over-automation (such as setting default values) 

 Under-automation (such as synchronization delay) 

 Specification, design and implementation mistakes 

(bugs) 

Latent Exceptions 

A latent exception is an exceptional situation of which the 

operators are not aware. A pseudo routine situation is a 

latent exception. Also, if the machine provides an 

indication about the exception, but the operators does 

notice it, the exception may be regarded as latent. The risks 

of latent exceptions are that the operators are not aware of 

them.  



The machine can handle automatically certain exceptions, 

such as operator slips. However, the machine cannot handle 

many other exceptions, such as a component failure or 

inconsistent system state.  

By default, following a diversion from routine operation, 

the exceptional situation is latent, which means that by 

default, the operators are not aware of the exception. These 

might remain latent if the design does not provide a proper 

indication about it. The operators may become aware of the 

exception only if the machine advertises it. Only then the 

operators can be aware of it. 

Latent Operational Modes 

This source of mode errors is encountered when the system 

does not display the operational mode, or when the 

operators do not notice it, because it is not visible, or 

audible, or because the operators are in stress, etc. An 

example is of mode setting by default. If a mode is set by 

default, and the system does notify the operators about the 

change, they might actuate the wrong function 

The Costs of Late Detection 

To enable the operators to resolve a problematic situation, 

the exception should be detected as early as it is generated. 

Unfortunately, when the hazard detection is employing 

probe-based, the time elapsed from generation to detection 

of the exceptional situation might not leave sufficient time 

for the operators to handle the situation. An example is of 

disabled backup utility. The exceptional situation of the 

backup pump in TMI remained latent until the pump was 

called to push coolant from the backup container. This was 

too late to enable the immediate cooling required.  

Fuzzy Situations 

Ideally, all the system requirements are specified in the 

requirement document. Practically, much of the 

requirements are implicit. People agree on the 

requirements, but do not bother to write down all the 

details, because they are tedious, and they are obvious. The 

problem with the implicit requirements is that at run time, 

the operators might miss critical details, such as events of 

scenario change. The following table presents a list of 

celebrated accidents due to fuzzy situations: 

 

Table 1 – examples of fuzzy rules 

In the example of unintentional delay setting above, the 

design may avoid the risks of user errors if different 

operation procedures were defined for two scenarios: 

normal operation and delayed operation. The design could 

not avoid the risks, because the two scenarios were not 

reflected in the system design. They were defined 

implicitly, enabling the user to make the mistake. The 

design could prevent the wrong control selection if the 

scenario was defined explicitly, and delay control was 

disabled in normal use of the appliance. The implication of 

this observation to system design is that operational 

scenarios should be defined explicitly, and that all the 

system units should share the same scenario 

Goal Setting 

Traditionally, the primary goals of UCD are to leverage 

productivity, performance, safety, user satisfaction, 

enjoyment, etc. When transforming these properties to the 

mental activities described by the low-level interaction 

model, the design goals may be stated as: facilitating 

reliable perception, decision support and protection from 

execution errors. The challenge of HSI engineering is to 

enable and guide system developers in designing systems 

that consider these factors. Limitations of this model are: 

 It is process-oriented, therefore, it does not highlight 

the value of the system, in terms of the system goals 

 Key factors affecting the system behavior cannot be 

controlled automatically, by design. These factors are 

marked as clouds in the chart above.  

 Poor validity, as there is no practical way to measure 

these, or to estimate the direction or magnitude of their 

effect. 

The implication of this discussion is that the low-level HMI 

model may be upgraded, to highlight the role of goals and 

performance, and to suggest on ways to protect from failure 

by automation. 

Design Highlights  

The discipline of HSI engineering may involve changes in 

the following aspects of the HMI design. 

Timing: traditionally, human factors are added ad-hoc to 

the system design. This is too late. It is the responsibility of 

systems engineers to integrate human factors in the stage or 

system analysis and requirements specification. 

Time span: traditionally, usability considerations focus on 

the stages of marketing and initial operation. It is essential 

to extend the scope of usability assurance to the whole life 

cycle. 

Automation control: a main consideration in HMI design 

is the balance between automation and human control. The 

new discipline will propose guidelines for collaboration 

design, optimizes for maximal performance and minimal 

risks. 

Failure analysis: Traditionally, failure prevention is based 

on root-cause analysis. Such analysis does not support 

coping with the unexpected and proposes developing rule-

based protection. Rebounding from operator’s slip should 

be integrated in the system design. The new discipline 

proposes that applying new methodologies for structured 

rebounding. 



Error tolerance: a common practice in system design is to 

apply means for fault tolerance. Traditionally, systems 

engineers do not apply such means for protection from 

operator’s errors. The new discipline proposes applying a 

model and means for preventing operator’s errors. 

Extended exception handling: traditionally, interaction 

design focuses on procedures of normal operation. 

However, system failure involves difficulties in operating 

in exceptional situations. Applying golden rules applicable 

to normal operation, as proposed by Shneiderman ([13]), 

might hamper the interaction in exceptional situations. It is 

about time to expand the HMI design practices, such as of 

deciding on interaction styles, to also support exception 

detection, troubleshooting, recovery and emergency 

operation. 

Modeling the HMI: a common practice for UI design is in 

terms of event-response. The new discipline considers 

typical sources of unexpected diversion, advocates 

scenario-based interaction styles and applies rule-based 

procedure-oriented definition.  

Human-machine collaboration: the new discipline 

proposes a new model of human-machine collaboration, 

enabling to cope with the exceptions. Also, it proposes that 

the implementation should be based on protocols 

describing proper interaction, which will enable diversion 

detection. Special safe-mode operational procedures are 

essential to deal with the unexpected in emergency. 

Situation awareness: Norman noted that a primary source 

for system failure is the lack of information required for 

situation awareness ([10]). A key related problem is of 

attention distraction due information overload, and the role 

of nuisance alarms. The new discipline proposes to develop 

a means for assessing the effect of various S/N ratio of 

notifications and alerts.  

Incidence investigation: traditionally, system failure is 

attributed to the operator. The new discipline encourages 

radical changes in system thinking, to mitigate the risk of 

common biases in interaction design and to enable learning 

from mishaps. These changes should be accompanied by 

technological advances, including activity trackers and 

analyzers, based on data mining technology. 

Glossary: various industry domains use specific terms for 

common attributes of HMI. The new discipline propose a 

glossary that may enable engineers of the different domains 

speak using the same language. 

Formalizing the Machine Behavior 

To implement the concept of self control, we need to define 

the data that the situation analyzer will use to decide 

whether the situation is routine or exceptional. The data 

used by the situation analyzer is a representation of the 

machine behavior, in terms of situation changes. Expected 

behavior may be defined by protocols of operational 

procedures, and of inter-unit compliance. For example, a 

protocol for operating a delay feature of a home appliance 

may include a condition that this procedure is available 

only when the machine assumes operating in a normal 

scenario. Also, a protocol for compliance between a safety-

critical unit and a safety feature, such as a backup unit, may 

be that both units share the same scenario.  

The machine situation may be formalized as a collection of 

the active states of state machines, each of which represents 

a protocol. Critical components may be associated with 

primary state machines, representing their availability, 

On/Off condition, Enabled/Disabled condition, and 

functional state. 

Design Practices 

Practices for exception prevention 

Practices for exception prevention include: 

 User centered design (UCD) 

 Applying fuzzy logic for slip and delay detection 

 Applying STAMP principle of self control 

 Standard protocols obtained from standard operational 

rules 

 Formalizing the system activity in terms of state 

machines 

 Ongoing risk information, obtained by risk indicators  

 Rules for balancing automation with manual control  

Practices for exception detection 

Risk Indicators: To detect risky situations, the machine 

may be equipped with sensors. For example, each 

component may be equipped with a sensor indicating its 

primary states. 

Indirect risk indicators: Additional risk indicators may be 

applied to warn about hazards and threat not detected by 

direct sensors of component primary states.  

Escalation indicators: special risk indicators, based on 

auxiliary sensors. For example, a thermometer may indicate 

hazards of uncontrolled overheating, and threats of extreme 

temperatures.  

UPIs: special risk indicator used to detect situations of the 

operator’s confusion ([6]). Statistical UPIs enable detection 

or usability flaws in website design ([7]). Such indicators 

were demonstrated in Ergolight toolkit for usability testing. 

Practices of exception handling 

Traditional exception handlers used in software design are 

of limited effect in HMI design. The essentials of HMI-

oriented exception handling include: 

Exception detection 

 Expected exceptions, by root-cause analysis 

 Unexpected exceptions, by searching the design scope 

 Risk indicators 

 Detectability, by implementing the scenarios and states 

Alarm control  

 By statistics of alarm S/N 

Troubleshooting 

 By dynamic root-cause analysis  



Integration 

The classical HMI model presented above describes short 

event-response sessions. It is low level. It does not show 

how the machine and the operators are engaged in solving 

high-level issues, such as human-machine control 

allocation, scenario sharing, detecting deviations from 

routine operation, troubleshooting, detecting unexpected 

situations etc. The following figure illustrates a way to 

implement the STAMP paradigm. 

 

Figure 4 – integration 

Human-Machine Collaboration (HMC)  

The HMC model assumes that the quality of the operators’ 

decision depends on the perception of the situation in 

general, and of exceptional situations in particular. 

Accordingly, the model focuses on avoiding, rebounding 

and recovery from exceptional situations. Critical factors, 

not controlled in implementations based on the classical 

model (above), are controlled in implementations based on 

the new model.  

The Situation Analyzer 

The situation analyzer traces the situation changes, based 

on sensory data received from the system, the operator and 

the environment. The new situation is tested with respect to 

a model of normal machine behavior, and classified as 

routine, exceptional or unexpected. The analyzer informs 

the operators about the non-routine activity, and sets the 

HMI style according to the category of the situation. 

The situation analyzer has two features: 

 It checks the compliance of the machine situation 

changes, as represented in the shadow, and provides 

warning in case of protocol violation. 

 It checks the compliance of the operator’s action with 

the shadow, according to the protocols, provides 

preview information to the operators about the 

potential effect of their action, and provides 

notifications and warnings in case of protocol 

violation. 

For example, in the case study of the unintentional delay of 

a home appliance, the system may operate in two scenarios: 

normal operation and delayed operation. The delay timer 

may be available in the delayed operation, but not in the 

normal operation. The situation analyzer has this rule 

stored in the knowledge base. Accordingly, the analyzer 

may disable the delay control when operating in normal 

operation, or at least warn the users when they try the delay 

control in normal operation. 

The Automation Controller 

An automation controller unit monitors the automation 

according to the situation, enabling the operator to override 

the automated system control, and enabling the system to 

override improper operator’s commands. It receives 

information from the situation analyzer about the next 

activity, and transforms the information to actionable 

information for the operators and the machine. When the 

situation received from the analyzer is of a routine scenario, 

the automation controller allocates the control to human 

operator and to the machine based on predefined rules, 

enabling the human operators to supervise the execution by 

the machine. When the situation is exceptional, the 

machine may have a more active role, providing warnings 

and indications of the system situation. In emergency, the 

machine may have an even more active role, initiating 

emergency evacuation procedures, and disabling risky 

operator’s activity, by rules of safe-mode operation.  

The Operator Interface (OI) 

The OI may consist of dedicated control stations, used for 

distinct operator’s roles and situations. In a recommended 

architecture, different stations to are assigned to distinct 

operational tasks: 

 Primary station - for managing the interaction in 

routine operational conditions 

 Recovery station - for managing the interaction in 

exceptional operational conditions. The operator’s 

primary task is troubleshooting 

 Rescue station - for managing the interaction in 

emergency, due to unexpected operational conditions 

 Supervision station - for managing the interaction 

when performing the top-level tasks, and for managing 

the interaction during hazard detection 

Because the mental mode is not the same for the different 

roles, the interaction style should also not be the same. For 

example, in the design of the primary and the supervision 

station we may assume that the operators may be trained to 

learn the access to the various features, and to respond 

properly to events. Such assumption is not valid for 

recovery and rescue stations, in which we should assume 

that the operators did not see the interfaces beforehand, and 

they need the machine support for learning how to respond 

and behave. Another example is the special attention to the 

possibility of tunnel vision in the design of the rescue 

station, because people are more prone to this effect in 

emergency. 

Testability of exceptional situations 

It is unlikely that in testing normal operation we may 

encounter all critical exceptional situations, unless we fake 

these situations.  

The validation procedures applied in traditional SI sessions 

do not target the interaction between the users and the 

system. Subsequent to the SI, the validation of the 

interaction between the users and the machine are 



conducted in special sessions of task-oriented usability 

testing, practiced by usability professionals, applying 

practices which are traditionally out of the scope of SE. 

These practices are most effective in validating routine 

operational procedures, but they are short of detecting rare 

events, and of identifying unexpected situations. In the 

framework of HSI, the validation of the interaction between 

the human operators and the machine modules (HMI) is 

embedded in the SI procedures, enabling validating also 

rare events and unexpected situations.  

The architecture used for the HMID should include means 

to fake and control exceptions efficiently, including a 

dedicated test station and means to bypass the actual 

machine situation. As an integral part of the project, a 

special interaction control unit should be developed, to 

enable simulation of rare event, such as hardware fault, for 

the validation testing. 

Alarm Control 

A primary source of operational errors is due to improper 

adjusting the thresholds that determine the transition to 

notification and to alarming. Special statistics may be 

employed to evaluate the rate of nuisance, and to compare 

the risks of nuisance with those of missed alarms. Special 

means, including an alarm control, may enable evaluating 

the risks and adjusting these thresholds.  

The New Discipline 

The discipline of HSI addresses the cooperation and 

collaboration between the disciplines. Hence, using 

engineering, psychology, and human factors together 

constitutes a transdisciplinary science. Unfortunately, these 

works did not mature yet to an engineering discipline.  

The way systems engineers implement their part in the 

collaboration is by ‘system thinking’. The way usability 

practitioners implement their part is by methodologies of 

UCD. The following chart illustrates the location of the 

new discipline of interaction design as a mediator between 

SE and UCD: 

 

Figure 5 – transdisciplinary coordination in HMI design 

The bridge that will enable crossing the chasm should be 

built using new methodologies about the way we define the 

interaction between the human operator and the machine. 

The transdisciplinary framework proposed here may enable 

to bridge the chasm between the SE and HF.  

HSI development 

HSI development includes special activities added to 

traditional system development. A waterfall model 

describing HSI development is depicted in the following 

chart: 

 

Figure 6 – HSI development 

The left side of the chart is an enhanced version of the 

traditional waterfall model. The major enhancements are 

about the system architecture, the interaction design and the 

integration testing. The right side of the chart is a waterfall 

of design topics in HSI, across the various development 

stages. Most notable are the model-based goal setting, 

alarm design and troubleshooting design. 

The Roles of HSI Engineers 

The job of the HSI engineer is to manage the design and 

testing of the operational procedures used to handle all 

possible situations and events. The roles of HSI engineers 

are depicted in chart above. The solid lines refer to major 

responsibilities of the HSI engineer. 

The HSI engineer is a coordinator between the 

technologists, the usability practitioners and the software 

engineers who implement the programs. Specifically, the 

HSI engineers are in charge of deciding what sensors 

should be installed to inform the system about its state. 

Also, the HSI engineers need to supply the usability 

practitioners with the information they need to have in 

order to be aware of the situation.  

In order to enable the design and testing of the HSI in a 

project the HSI engineer may need to do the following: 

 At the stage of defining the design concept, set the 

design goals, including performance and reliability 

attributes, based on the HMI model. 

 At the stage of requirements specification,  

o Define the operational scenarios and the machine 

states in the system documents, and represent 

them in the project knowledge base, used for the 

situation analysis 

o Specify the requirements for integrating the 

knowledge base in order to implement the 

situation analyzer 

 At the top-level design of the system normal behavior, 

define the actions applicable to the different system 

states, and represent them in the project database 



 At the stage of failure analysis, specify the various 

expected deviations from normal operational 

conditions in the system documents, including the 

maximal response time that will be used as thresholds 

for safe recovery, and represent them in the project 

database 

 At the stage of interaction design, specify:  
o The human-machine task allocation in the various 

scenarios 

o The sensors available in the project, what they 

measure, and their association with the various 

expected deviations, including virtual sensors, 

namely, computed measures used for indirect 

deviation detection 

 At the stage of exception definition, specify the alert 

and notification thresholds, and the safety thresholds 

for the sensory data, including: 

o Attributes, such as modality, intensity, desired 

effect for the various addressees 

o Preferred/default operators’ response for each of 

the alerts/ notifications 

o Define procedures for optimizing the thresholds 

used in the various risk indicators 

o Secondary risks of failure of the alarm system 

o Procedures for identifying the secondary 

diversions 

 At the stage of test design, specify: 

o The requirements from a test controller, a special 

unit used to simulate rare events, such as 

component faults, for the testing 

o The method for optimizing the thresholds used in 

risk indicators. 
CONCLUSIONS 

HSI engineering is primarily about HMI design and testing. 

In order to ensure long-term high performance, the design 

should focus on enforcing operational reliability. A main 

conclusion from the complexity and variety of related 

considerations and methods is that in the 4
th

 industrial 

revolution the theory of HSI engineering should evolve to a 

sub discipline of systems engineering. The 4
th

 industrial 

revolution may involve various shifts towards HMI, 

associated with technology, methodology and HMI 

thinking and practices. These shifts may affect the people 

productivity, quality of life and safety. The new discipline 

may be based on scientific foundations, which may require, 

high degree in universities. The discussion above suggests 

that the focus of these studies will be on HMI design, 

testing and optimization. 
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