
Essentials of Integration Engineering

Avi Harel, https://avi.har-el.com/

Ergolight consulting, ergolight@gmail.com

Foundations

The systems of interest

The primary goal of systems engineering is to maximize system utility. The system utility may
be defined as the value of performance minus the operational risks. Therefore, the primary
goals of systems engineering are to maximize system performance and to minimize the
operational risks.

The operational risks may be defined in terms of operational waste. The operational waste
may be defined as the maximal performance minus the actual performance. Operational
waste is inversely correlated with seamless operation. According to prior case studies, the
sources of operational waste include operating in hidden incidents. These are exceptional
situations, of which the operators are not aware (Harel & Weiss, 2011).

Exceptional situations hamper seamless operation. To minimize the operational waste, the
system design should enable seamless operation. This feature, commonly labeled as
system usability, is a key factor affecting functionality, safety, productivity, and consumer
satisfaction. We may classify the systems of interest according to the rate and costs of
incidents.

• Low-rate, high-cost incidents are commonly called accidents. Traditionally,
designers attribute accidents to bad luck (Bloch, 1977; Taleb, 2007)

• High-rate, low-cost incidents are commonly called errors. Traditionally, the designers
do not admit the design mistakes, as the customers agree to attribute the failure to
themselves (Norman, 1983).

• High-rate, high-cost, as in medical treatment, intensive wars, or other disaster.

Barriers to seamless operation

To enable seamless operation, we need to understand the sources of incidents, and find
ways to eliminate them. Practically, we need to understand the ways incidents are
generated, and the ways to recover from them.

https://avi.har-el.com/
mailto:ergolight@gmail.com

Typically, system designers, the customers, and the operators, cannot notice most of the
incidents, and therefore are not aware of them. In case when they notice an incident, they
often attribute it to an operator’s error. They are obliged to pay attention to an incident only
in case of an accident, namely, when the costs are extremely high. Still, most accidents are
commonly attributed to human errors (cf. Zonnenshain and Harel, 2015). Practically, we
should assume that the number of incidents is huge, because we can see only those that are
costly, and because we do not bother to detect and investigate low-cost incidents.

Understanding errors

All systems are always operated under risk of unexpected failure, because these risks are
unknown (Taleb, 2007). When the failure costs are high, we typically attribute them to
operator’s errors (Hollnagel, 1983). Analysis of many accidents has shown that the term
human error is just a name for operational failure that the human operator was not able to
prevent (cf. Dekker, 2007). To eliminate human errors, we need to understand how they
develop. To be on the safe side, we should protect the system from all risky situations,
because we cannot tell when one of them might be disastrous. Practically, this implies that
error proofing ought to be a key topic of systems engineering. The challenge is to get enough
evidence to understand how system operation fails.

Evidence base

To get the evidence of the sources of failure, we need to embed special probes and tools in
the system design, to sense, trace, and analyze the system activity (Harel et al., 2008), and
to provide reports about exceptional activity (Harel, 1999, 2009). These extra means are
costly, because the system activity is complex, and are affordable only in special domains,
such as aeronautics and high-risk process industries.

Another barrier to capturing exceptional activity is the accountability bias, namely,
reluctance to gather evidence about the source of failure (Dekker, 2007). The designers’
interest is to underestimate the costs of errors, and to overestimate the costs of capturing
exceptions. Typically, designers are likely to compromise operational risks, preferring
explanations such as force majeure and Murphy’s Law, over comprehensive root-cause
analysis (RCA).

Reactive RCA

In traditional RCA we look for a unique trigger for the unfortunate event. Often, we realize
that besides the trigger, there are other risk factors, typically, special conditions that enable
the undesired effect of the trigger. In reactive engineering, we often look for flaws in the

development practices. For example, the RCA of the classical Therac-25 accidents indicated
nearly 12 engineering problems (Leveson, 1983, 2017). These findings are based on safety
thinking, which is ad hoc. These findings are circumstantial. They might suggest to the
development team how they could do better engineering, but they did not teach about how
to prevent similar accidents in future systems, in other domains. In proactive engineering,
the goal is to prevent such mishaps by design.

Proactive RCA

A proactive version of Murphy’s Law is that errors are design mistakes, and therefore failure
should be prevented by design. Error proofing should be based on a special model of root-
cause analysis (RCA).

To extend the findings to other domains, we need to employ system thinking, rather than
safety thinking. A way to implement system thinking in the design of safety-critical system is
by employing the System Theoretic Accident Methods and Processes (STAMP) proposed by
Leveson (2004), based on the theory of cybernetics (Wiener, 1948).

Model-based RCA

A meta-RCA indicates that system failure is often the outcome of a two-stage process: first,
an unexpected trigger diverts the system situation to exceptional, and then, another activity
results in the undesired costly situation. Typically, the second activity could be regarded as
expected, should the system be in the original situation, prior to the first trigger. However,
because the system situation is exceptional, the second activity is unexpected.

The two-stage model applies not only to safety critical systems, as proposed originally, but
also to all utility-critical systems. It is often more effective than the traditional RCA for
describing complex operational failures, such as mode errors following unintentional
activation of shortcut keys (Harel, 2009). Therefore, the STAMP approach may be extended
to a System Theoretic Utility Methods and Processes (STUMP) approach.

Operational risks

According to the failure model described above, the operational risks may be classified as
triggers, situational, and activity risks.

Triggers

The triggers may be classified according to their actuators: human or technological. Human
operators are error prone. A human factors version of Murphy’s Law is: if the design enables
the operators to fail, eventually they will. Technological triggers are much rarer because they
are captured during the system verification process. A specific technological trigger is
intermittent power failure, followed by automatic setting of a default mode, which does not
comply with the system situation.

Human triggers may be unintentional or due to wrong decisions. Unintentional human
triggers, such as in the B-17 accidents in WWII, or the lever setting to the maintenance-only
Control position in the Torrey Canon accident, are called slips (Norman, 1983).

Human triggers are challenging, because humans are included in the system as flexible
operators in emergencies, to enable coping with exceptional situations unseen at design
time. However, they can rarely do it properly, due to their virtue of training-based reaction.
According to the “irony of operation”, in emergency, the operators are likely to react as
trained in normal operation, instead as by calm, logical decision making. For example, if the
system design includes a frequently used prompting to confirm risky operation, the human
operator is likely to confirm the prompt automatically, before considering its applicability, as
expected by the designers.

Situational risks

The situational risks may be classified as external or internal. Externally, normal operation
must be in the performance envelope. Internally, the situations must be coordinated.
External risks are due to approaching the performance boundaries, defined as limits of
performance variables. Internal risks are due to diversion from the situations defined as
normal. The number of possible situations grows exponentially with the number of state
machines employed in the system operation; therefore, careless design of the situation
coordination is error prone. Special coordination techniques, such as scenario-based
situation assignment, must be employed to maintain situation coordination.

In normal design, almost all nontrivial system units are prone to situational errors, in terms
of accessibility or availability. For example, if a utility critical feature, such as a backup
facility, is disabled or inaccessible in functional operation, then the operation might fail due
to an over-constrained (alpha type) design mistake. On the other hand, if a risk critical
feature, such as reset or restart, is enabled or accessible in the wrong scenario, then the

operation might fail due to under-constrained (beta type) design mistake. Very common
examples of

Activity risks

Activity risks are mode errors, namely, failures due problems of coordinating the mode
(operational state) of a system unit with the operational scenario. Often, they are due to
enabling operation in exceptional or in fuzzy situations. A situation is regarded as fuzzy if the
system design does not include means to identify the concrete situation. A special mode of
fuzzy situation, implemented in many accidents, is when the operational scenario is not
defined explicitly. In these cases, the activity intended for a particular scenario might be risky
in other scenarios.

Almost all system units, and almost all system features, are prone to activity risks, due to
mistakes in constraining the system situation (cf Harel, 2011). Mode errors are very frequent
in the operation of consumer products, in which the design enables access to setup features
in while in functional operation. Enabling maintenance-only features in functional operation
might also result in mode errors, such as the erroneous disabling of the TMI backup pump.
Another source of mode errors is process design having multiple use cases of mode setting.
This might result in conflicting mode setting, as demonstrated in the TMI backup pump case.

Mode errors are also the primary source of several friendly fire accidents, as well as
accidents in transportation systems, such as several TO/GA, the AF296, AeroPeru 603, and
Torrey Canyon LOCA. Mode errors are also involved in accidents due to operating in transient
situations, such as in the Therac-25 accident. A special form of activity risk, known as an
interlock problem, is when enabling mode transition by conflicting controllers’ scenarios.

Engineering

Affordability

A primary requirement for enabling integration design is affordability. The development
should be based on predefined generic meta rules, which are common across many
industries and domains. These generic rules may be customized for specific families of
projects.

Learning from SW engineering

Integration design should develop from art to engineering (Harel & Zonnenshain, 2019). A
model of this transition was proposed for SW engineering. Traditionally, the actual costs and
time to market of software projects were 300% of the plans. Why?

“When a bridge falls down, it is investigated and a report is written on the cause of the
failure. This is not so in the computer industry where failures are covered up, ignored,
and/or rationalized. As a result, we keep making the same mistakes over and over
again”.

(Standish, 1995).

Model-based integration design

The generic rules are based on models of system behavior (Harel, 2021). A top-level model
is of the big picture, comprising the STS, the stakeholders, and the interactions between
them. Then, we drill down from outside in (Boy, 2013). Each STS may include elementary
units: technical units, human users and operators, and AI units. The technical and AI units
include processes, which interact with each other.

In utility-oriented engineering we assume that we cannot predict the failure of elementary
units. We focus on the interactions, and we assume an OEM models of the elementary units.
According to these models, we need to specify the functional and performance
requirements, and the unit messages about both success and failure.

Normal interaction is task driven, comprising a supervisor, one or more controllers, and one
or more servers. In normal operation the supervisor processes define tasks for the controller
processes, as well as operational scenarios. The controller processes issue commands or
requests to the service processes, and the services provide situation and activity reports.
The service processes may employ behavioral twins, intended to provide static and
exploratory preview information, based on simulation (Luqi, 1989).

The supervisor processes are use cases of the controller processes, and the latter are use
cases of the service processes. Process duplication may support single use-case per
process, enabling to prevent conflicting mode setting.

Model-based coordination

A method used to design the coordination between processes is based on the principle of
multiple layer defense, as demonstrated using the Swiss Cheese illustration: the preferred
layer is by risk elimination, rebounding from hazards, and finally resilience.

1. The primary protection layer comprises methods for preventing hazards, such as by
constraining the operation and by notifying on approaching the protection
boundaries.

2. Not all hazards are expected. A second protection layer is about threat detection. A
method for detecting unexpected situations is by risk indicator, based on
segmentation of continuous system variables, such as performance variables, or
time measurement of process execution or state transition.

3. Not all expected hazards can possibly be prevented. A third protection layer
comprises methods for rebounding from exceptional situations, such as by alerting
the operators about the increase of the risk level.

4. Occasionally, the operators might fail to rebound from the exceptional situation. The
fourth protection layer comprises methods for preventing the situation escalation, of
the hazard transforming to threats. The methods are by applying troubleshooting and
recovery procedures, by collaboration between the operators and the system, while
in safe-mode operation.

5. Sometimes, the system design does not include sufficient means for
troubleshooting, and the coordination practically fails. For these cases, the system
should apply a last protection layer, which is by employing resilience procedures.

Rule definition

Key generic meta rules are intended for scenario definition and scenario-based situation and
activity design. Scenarios are used as situation vectors, namely, pointers to the set of state
machines, thus reducing the situational complexity from exponential to linear. The rules
should define the mapping from scenarios to the situation vectors. For example, in the
Therac-25 accident, there were two operational scenarios: X-ray and E-beam. The situations
underlying these scenarios were tray position: in or out, and beam intensity: low or high. The
corresponding mapping from scenarios to vectors were:

X-ray ➔ (in, high), and

E-beam ➔ (out, low)

The accident was due to an exceptional situation (out, high).

The rules should also define the scenario transition, and the system behavior in the
synchronization of the transient scenario, during the transition. Other generic rules should
support reacting to risky activity and to diversion. The reaction to risky activity may be by
rebounding. The reaction to diversion should be troubleshooting in special safe-mode
operation, in which risky activity should be disabled. Yet another group of generic rules is
testing support. This should be required to cope with the unexpected. A special test mode
should enable faking triggers, uncoordinated situations, and activity risks.

Transdisciplinary engineering

Error proofing is a transdisciplinary activity:

• Systems engineering: in charge of defining functions, architecture and performance
• Human Centered Design (HCD): in charge of User Interface design, considering

human factors
• Human System Integration (HSI): in charge of defining the rules for normal operation,

and for reacting to exceptions
• Software: in charge of employing the rules in object classes and instances

In the context of HSI, the system should provide the human operators with clear and
comprehensive information required for decision making. This information should include
static prediction of the system situation, as well as exploratory prediction of operational
options. The information should be provided gradually, according to the needs for decision
making, employing HCD principles, considering the mental capabilities of the human
operators.

Conclusions

The article presents three layers of operational failure: exceptions, errors, and accidents.
The design goal proposed here is to facilitate the system operation. The principles and
methods discussed here focus on mitigating the risks of exceptions. To implement the ideas
described here, we should:

1. Develop and validate the meta rules proposed here
2. Develop tools for rule customization, activity tracking, activity analysis, investigation

reporting, embedding behavioral twins in the system design, including test support
3. Define software object classes for the processing of supervision, control, and

services, in normal and in safe-mode operation, with testability attributes
4. Develop software plugins for scenario editing, rule-based detecting, alerting,

rebounding, and troubleshooting.

References
Bainbridge, L 1983, Ironies of automation. Automatica. 19 (6): 775–779. doi:10.1016/0005-

1098(83)90046-8. ISSN 0005-1098

Bloch, A 1977, Murphy's Law, and Other Reasons Why Things Go WRONG

Boy, GA, 2013, Orchestrating Human-Centered Design. New York: Springer. ISBN 978-1-

4471-4338-3

Harel, A 1999, Automatic Operation Logging and Usability Validation, Proceedings of HCI

International '99, Munich, Germany, Vol. 1, pp. 1128-1133

Harel, A 2009, Statistical Analysis of the User Experience, Invited talk - 2nd Meeting of

isENBIS, Hertzelia, Israel

Harel, A 2011, Comments on IEC 60601-1-8. Letter submitted to IEC/TC 62 working group.

Harel, A 2021. Towards Model-based HSI Engineering: A Universal HSI Model for Utility

Optimization, to be published in Proceeding of the second HSI conference, San Diego,

US.

Harel, A, Kenett, R & Ruggeri, F 2008, - Modeling Web Usability Diagnostics on the basis of

Usage Statistics. in: Statistical Methods in eCommerce Research, W. Jank and G.

Shmueli editors, Wiley.

Harel, A & Weiss, M, 2011, Mitigating the Risks of Unexpected Events by Systems Engineering,

The Sixth Conference of INCOSE-IL, Hertzelia, Israel

Harel, A & Zonnenshain, A 2019, Engineering the HSI. Proceedings of the first HSI conference,

Biarritz, France

Hollnagel, E 1983, Human Error. Position Paper for NATO Conference on Human Error.

Bellagio, Italy.

Leveson, N Turner, C 1993, "An Investigation of the Therac-25 Accidents," In Ethics and

Computing: Living Responsibly in a Computerized World, by KW Bowyer. Los

Alamitos, CA: IEEE Computer Society Press, 1996. First Published in Computer, Vol.

26. No. 7, July 1993, pp. 18-41.

Leveson, N 2004. A New Accident Model for Engineering Safer Systems. Safety Science

42(4):237-270

Leveson, NG 2017. "The Therac-25: 30 Years Later," in Computer, vol. 50, no. 11, pp. 8-11,

November

Luqi 1989, Software Evolution through Rapid Prototyping. IEEE Computer. 22 (5): 13–25.

doi:10.1109/2.27953. hdl:10945/43610

Norman, DA 1983, Design Rules Based on Analyses of Human Error. Communications of the

ACM 26(4):254-258

Norman, DA 2013, The design of everyday things. MIT Press.

Standish Group, 1995, The COMPASS report, Forbes.

Taleb, NN 2007, The Black Swan: The Impact of the Highly Improbable. Random House Trade

Paperbacks.

Wiener, N 1948, Cybernetics; or, Control and communication in the animal and the machine.

Technology Press, Cambridge.

Zonnenshain, A & Harel, A 2015, A practical guide to assuring the system resilience to

operational errors, INCOSE. Annual International Symposium, Seattle.

https://en.wikipedia.org/wiki/Arthur_Bloch

