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Foundations 

The systems of interest 

The primary goal of systems engineering is to maximize system utility. The system utility may 
be defined as the value of performance minus the operational risks. Therefore, the primary 
goals of systems engineering are to maximize system performance and to minimize the 
operational risks.  

The operational risks may be defined in terms of operational waste. The operational waste 
may be defined as the maximal performance minus the actual performance. Operational 
waste is inversely correlated with seamless operation. According to prior case studies, the 
sources of operational waste include operating in hidden incidents. These are exceptional 
situations, of which the operators are not aware (Harel & Weiss, 2011).  

Exceptional situations hamper seamless operation. To minimize the operational waste, the 
system design should enable seamless operation. This feature, commonly labeled as 
system usability, is a key factor affecting functionality, safety, productivity, and consumer 
satisfaction. We may classify the systems of interest according to the rate and costs of 
incidents. 

• Low-rate, high-cost incidents are commonly called accidents. Traditionally, 
designers attribute accidents to bad luck (Bloch, 1977; Taleb, 2007) 

• High-rate, low-cost incidents are commonly called errors. Traditionally, the designers 
do not admit the design mistakes, as the customers agree to attribute the failure to 
themselves (Norman, 1983). 

• High-rate, high-cost, as in medical treatment, intensive wars, or other disaster. 

Barriers to seamless operation 

To enable seamless operation, we need to understand the sources of incidents, and find 
ways to eliminate them. Practically, we need to understand the ways incidents are 
generated, and the ways to recover from them.  
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Typically, system designers, the customers, and the operators, cannot notice most of the 
incidents, and therefore are not aware of them. In case when they notice an incident, they 
often attribute it to an operator’s error. They are obliged to pay attention to an incident only 
in case of an accident, namely, when the costs are extremely high. Still, most accidents are 
commonly attributed to human errors (cf. Zonnenshain and Harel, 2015). Practically, we 
should assume that the number of incidents is huge, because we can see only those that are 
costly, and because we do not bother to detect and investigate low-cost incidents.  

Understanding errors 

All systems are always operated under risk of unexpected failure, because these risks are 
unknown (Taleb, 2007). When the failure costs are high, we typically attribute them to 
operator’s errors (Hollnagel, 1983). Analysis of many accidents has shown that the term 
human error is just a name for operational failure that the human operator was not able to 
prevent (cf. Dekker, 2007). To eliminate human errors, we need to understand how they 
develop. To be on the safe side, we should protect the system from all risky situations, 
because we cannot tell when one of them might be disastrous.  Practically, this implies that 
error proofing ought to be a key topic of systems engineering.  The challenge is to get enough 
evidence to understand how system operation fails.  

Evidence base 

To get the evidence of the sources of failure, we need to embed special probes and tools in 
the system design, to sense, trace, and analyze the system activity (Harel et al., 2008), and 
to provide reports about exceptional activity (Harel, 1999, 2009). These extra means are 
costly, because the system activity is complex, and are affordable only in special domains, 
such as aeronautics and high-risk process industries. 

Another barrier to capturing exceptional activity is the accountability bias, namely, 
reluctance to gather evidence about the source of failure (Dekker, 2007). The designers’ 
interest is to underestimate the costs of errors, and to overestimate the costs of capturing 
exceptions. Typically, designers are likely to compromise operational risks, preferring 
explanations such as force majeure and Murphy’s Law, over comprehensive root-cause 
analysis (RCA). 

Reactive RCA  

In traditional RCA we look for a unique trigger for the unfortunate event. Often, we realize 
that besides the trigger, there are other risk factors, typically, special conditions that enable 
the undesired effect of the trigger. In reactive engineering, we often look for flaws in the 



development practices. For example, the RCA of the classical Therac-25 accidents indicated 
nearly 12 engineering problems (Leveson, 1983, 2017). These findings are based on safety 
thinking, which is ad hoc. These findings are circumstantial. They might suggest to the 
development team how they could do better engineering, but they did not teach about how 
to prevent similar accidents in future systems, in other domains. In proactive engineering, 
the goal is to prevent such mishaps by design.  

 

Proactive RCA  

A proactive version of Murphy’s Law is that errors are design mistakes, and therefore failure 
should be prevented by design. Error proofing should be based on a special model of root-
cause analysis (RCA).  

To extend the findings to other domains, we need to employ system thinking, rather than 
safety thinking. A way to implement system thinking in the design of safety-critical system is 
by employing the System Theoretic Accident Methods and Processes (STAMP) proposed by 
Leveson (2004), based on the theory of cybernetics (Wiener, 1948). 

Model-based RCA 

A meta-RCA indicates that system failure is often the outcome of a two-stage process: first, 
an unexpected trigger diverts the system situation to exceptional, and then, another activity 
results in the undesired costly situation. Typically, the second activity could be regarded as 
expected, should the system be in the original situation, prior to the first trigger. However, 
because the system situation is exceptional, the second activity is unexpected.  

The two-stage model applies not only to safety critical systems, as proposed originally, but 
also to all utility-critical systems. It is often more effective than the traditional RCA for 
describing complex operational failures, such as mode errors following unintentional 
activation of shortcut keys (Harel, 2009). Therefore, the STAMP approach may be extended 
to a System Theoretic Utility Methods and Processes (STUMP) approach. 

Operational risks 

According to the failure model described above, the operational risks may be classified as 
triggers, situational, and activity risks.  



Triggers 

The triggers may be classified according to their actuators: human or technological. Human 
operators are error prone. A human factors version of Murphy’s Law is: if the design enables 
the operators to fail, eventually they will. Technological triggers are much rarer because they 
are captured during the system verification process. A specific technological trigger is 
intermittent power failure, followed by automatic setting of a default mode, which does not 
comply with the system situation. 

Human triggers may be unintentional or due to wrong decisions. Unintentional human 
triggers, such as in the B-17 accidents in WWII, or the lever setting to the maintenance-only 
Control position in the Torrey Canon accident, are called slips (Norman, 1983).  

Human triggers are challenging, because humans are included in the system as flexible 
operators in emergencies, to enable coping with exceptional situations unseen at design 
time. However, they can rarely do it properly, due to their virtue of training-based reaction. 
According to the “irony of operation”, in emergency, the operators are likely to react as 
trained in normal operation, instead as by calm, logical decision making. For example, if the 
system design includes a frequently used prompting to confirm risky operation, the human 
operator is likely to confirm the prompt automatically, before considering its applicability, as 
expected by the designers. 

Situational risks 

The situational risks may be classified as external or internal. Externally, normal operation 
must be in the performance envelope. Internally, the situations must be coordinated. 
External risks are due to approaching the performance boundaries, defined as limits of 
performance variables. Internal risks are due to diversion from the situations defined as 
normal. The number of possible situations grows exponentially with the number of state 
machines employed in the system operation; therefore, careless design of the situation 
coordination is error prone. Special coordination techniques, such as scenario-based 
situation assignment, must be employed to maintain situation coordination. 

In normal design, almost all nontrivial system units are prone to situational errors, in terms 
of accessibility or availability. For example, if a utility critical feature, such as a backup 
facility, is disabled or inaccessible in functional operation, then the operation might fail due 
to an over-constrained (alpha type) design mistake. On the other hand, if a risk critical 
feature, such as reset or restart, is enabled or accessible in the wrong scenario, then the 



operation might fail due to under-constrained (beta type) design mistake. Very common 
examples of  

Activity risks 

Activity risks are mode errors, namely, failures due problems of coordinating the mode 
(operational state) of a system unit with the operational scenario. Often, they are due to 
enabling operation in exceptional or in fuzzy situations. A situation is regarded as fuzzy if the 
system design does not include means to identify the concrete situation. A special mode of 
fuzzy situation, implemented in many accidents, is when the operational scenario is not 
defined explicitly. In these cases, the activity intended for a particular scenario might be risky 
in other scenarios. 

Almost all system units, and almost all system features, are prone to activity risks, due to 
mistakes in constraining the system situation (cf Harel, 2011). Mode errors are very frequent 
in the operation of consumer products, in which the design enables access to setup features 
in while in functional operation. Enabling maintenance-only features in functional operation 
might also result in mode errors, such as the erroneous disabling of the TMI backup pump. 
Another source of mode errors is process design having multiple use cases of mode setting. 
This might result in conflicting mode setting, as demonstrated in the TMI backup pump case.  

Mode errors are also the primary source of several friendly fire accidents, as well as 
accidents in transportation systems, such as several TO/GA, the AF296, AeroPeru 603, and 
Torrey Canyon LOCA. Mode errors are also involved in accidents due to operating in transient 
situations, such as in the Therac-25 accident. A special form of activity risk, known as an 
interlock problem, is when enabling mode transition by conflicting controllers’ scenarios. 

Engineering 

Affordability 

A primary requirement for enabling integration design is affordability. The development 
should be based on predefined generic meta rules, which are common across many 
industries and domains. These generic rules may be customized for specific families of 
projects. 

Learning from SW engineering 

Integration design should develop from art to engineering (Harel & Zonnenshain, 2019). A 
model of this transition was proposed for SW engineering. Traditionally, the actual costs and 
time to market of software projects were 300% of the plans. Why?  



“When a bridge falls down, it is investigated and a report is written on the cause of the 
failure. This is not so in the computer industry where failures are covered up, ignored, 
and/or rationalized. As a result, we keep making the same mistakes over and over 
again”. 

(Standish, 1995). 

Model-based integration design 

The generic rules are based on models of system behavior (Harel, 2021). A top-level model 
is of the big picture, comprising the STS, the stakeholders, and the interactions between 
them. Then, we drill down from outside in (Boy, 2013). Each STS may include elementary 
units: technical units, human users and operators, and AI units. The technical and AI units 
include processes, which interact with each other.  

In utility-oriented engineering we assume that we cannot predict the failure of elementary 
units. We focus on the interactions, and we assume an OEM models of the elementary units. 
According to these models, we need to specify the functional and performance 
requirements, and the unit messages about both success and failure.  

Normal interaction is task driven, comprising a supervisor, one or more controllers, and one 
or more servers. In normal operation the supervisor processes define tasks for the controller 
processes, as well as operational scenarios. The controller processes issue commands or 
requests to the service processes, and the services provide situation and activity reports. 
The service processes may employ behavioral twins, intended to provide static and 
exploratory preview information, based on simulation (Luqi, 1989).  

The supervisor processes are use cases of the controller processes, and the latter are use 
cases of the service processes. Process duplication may support single use-case per 
process, enabling to prevent conflicting mode setting.  

Model-based coordination  

A method used to design the coordination between processes is based on the principle of 
multiple layer defense, as demonstrated using the Swiss Cheese illustration: the preferred 
layer is by risk elimination, rebounding from hazards, and finally resilience. 

1. The primary protection layer comprises methods for preventing hazards, such as by 
constraining the operation and by notifying on approaching the protection 
boundaries.  



2. Not all hazards are expected. A second protection layer is about threat detection. A 
method for detecting unexpected situations is by risk indicator, based on 
segmentation of continuous system variables, such as performance variables, or 
time measurement of process execution or state transition.  

3. Not all expected hazards can possibly be prevented. A third protection layer 
comprises methods for rebounding from exceptional situations, such as by alerting 
the operators about the increase of the risk level. 

4. Occasionally, the operators might fail to rebound from the exceptional situation. The 
fourth protection layer comprises methods for preventing the situation escalation, of 
the hazard transforming to threats. The methods are by applying troubleshooting and 
recovery procedures, by collaboration between the operators and the system, while 
in safe-mode operation. 

5. Sometimes, the system design does not include sufficient means for 
troubleshooting, and the coordination practically fails. For these cases, the system 
should apply a last protection layer, which is by employing resilience procedures. 

Rule definition 

Key generic meta rules are intended for scenario definition and scenario-based situation and 
activity design. Scenarios are used as situation vectors, namely, pointers to the set of state 
machines, thus reducing the situational complexity from exponential to linear. The rules 
should define the mapping from scenarios to the situation vectors. For example, in the 
Therac-25 accident, there were two operational scenarios: X-ray and E-beam. The situations 
underlying these scenarios were tray position: in or out, and beam intensity: low or high. The 
corresponding mapping from scenarios to vectors were:  

X-ray ➔ (in, high), and  

E-beam ➔ (out, low)  

The accident was due to an exceptional situation (out, high). 

The rules should also define the scenario transition, and the system behavior in the 
synchronization of the transient scenario, during the transition. Other generic rules should 
support reacting to risky activity and to diversion. The reaction to risky activity may be by 
rebounding. The reaction to diversion should be troubleshooting in special safe-mode 
operation, in which risky activity should be disabled. Yet another group of generic rules is 
testing support. This should be required to cope with the unexpected. A special test mode 
should enable faking triggers, uncoordinated situations, and activity risks. 



Transdisciplinary engineering 

Error proofing is a transdisciplinary activity: 

• Systems engineering: in charge of defining functions, architecture and performance 
• Human Centered Design (HCD): in charge of User Interface design, considering 

human factors 
• Human System Integration (HSI): in charge of defining the rules for normal operation, 

and for reacting to exceptions 
• Software: in charge of employing the rules in object classes and instances 

In the context of HSI, the system should provide the human operators with clear and 
comprehensive information required for decision making. This information should include 
static prediction of the system situation, as well as exploratory prediction of operational 
options. The information should be provided gradually, according to the needs for decision 
making, employing HCD principles, considering the mental capabilities of the human 
operators. 

Conclusions 

The article presents three layers of operational failure: exceptions, errors, and accidents. 
The design goal proposed here is to facilitate the system operation. The principles and 
methods discussed here focus on mitigating the risks of exceptions. To implement the ideas 
described here, we should: 

1. Develop and validate the meta rules proposed here 
2. Develop tools for rule customization, activity tracking, activity analysis, investigation 

reporting, embedding behavioral twins in the system design, including test support 
3. Define software object classes for the processing of supervision, control, and 

services, in normal and in safe-mode operation, with testability attributes 
4. Develop software plugins for scenario editing, rule-based detecting, alerting, 

rebounding, and troubleshooting. 
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