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ABSTRACT 

This article targets designers of tools for developing utility-

critical systems, including safety-critical, usability-critical, 

and productivity-critical systems, as well as consumer 

products. Analyses of operational failure case studies 

indicate that many of them are due to insufficient support 

for coping with operational complexity. Operational 

complexity may be defined in terms of exceptional 

situations. Prior studies indicate the feasibility of reducing 

the operational complexity by merging theories from 

various domains with practices employed in various 

industries. The article presents a semi-quantitative study of 

a universal HSI model, consisting of seven layers of 

generic mini models (GMM) used to cope with exceptions. 

The article assumes that all engineered systems are error-

prone, and that even systems need to protect all system 

agents from making errors. The paper structure is adapted 

for people who are used to study presentation according to 

APA standards, with four sections: introduction, method, 

results, and discussion. 
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INTRODUCTION 

Early computer-embedded systems suffered from usability 

problems, resulting in productivity and safety loss 

(Landauer, 1995)[32]. Analyses of operational failure case 

studies indicate that often they are due to insufficient 

support for preventing and operating in exceptional 

situations (Zonnenshain & Harel, 2015)[56].  

Foundations 

Some of the concepts employed in this study, such as 

performance envelope, exceptions, and model-bases system 

integration, are built on the basic concepts. These concepts 

were described in (Harel & Zonnenshain, 2019)[23]. 

System performance 

A common measure of the system value is in terms of 

performance. SEBoK refers to the System performance as a 

basic term. Typically, the meaning of this term depends on 

the purpose and functions of the system. Ideally, it is 

associated with metrics such as throughput, bandwidth, 

power consumption, etc. However, the perceived 

performance is typically industry and domain specific. In 

practice, it depends also on implicit factors, which are not 

testable. Often, the implicit factors are more significant 

than the measureable and testable factors. Therefore 

Cambridge dictionary defines performance as “how well a 

person, machine, etc. does a piece of work or an activity”. 

Typically, the term refers to the perceived efficiency, 

namely, how well the system performs.  

The performance envelop 

Hollnagel (2006)[26] suggested that system failure is often 

associated with operating in extreme conditions. The limits 

of performance may be defined by the performance 

envelope. The performance envelope is an extension of the 

concept of flight protection envelope. For example, the 

speed of an airplane is limited by the stall threat and the 

Mach number, and the altitude is limited by the Coffin 

Corner (Swatton, 2011)[46]. These conditions should be 

considered setting the performance goal. The performance 

envelope may be optimized by design supporting seamless 

operation.  

The system value 

A common practice for assessing the system value is in 

terms of performance in routine operation in optimal 

conditions. For example, a typical goal of people as human 

beings is to stay healthy as long as possible. The problem 

with this kind of assessment is that the performance in 

optimal conditions does not represent properly the actual 

system value. In practice, as human beings who take care of 

their health, we take care of illness: prevent illness, and 

recover easily. The value of systems may be expressed in 

terms of the life-span performance bounded by the 

performance envelope. The value is affected not only by 

the design features, but also by the constraints, defined by 

the performance envelope, as illustrated in the following 

figure: 
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The actual system value is affected by the need to avoid the 

risks of crossing the performance envelope.  

The effect of incidences 

An incidence is an event of crossing the performance 

envelope. Costly incidences are those that cross the 

protection envelope. The effect of costly incidences on the 

system utility is depicted in the following figure: 

 

Theoretically, the system value may be calculated by 

accumulating the utility over the life cycle, as in the 

following box: 

 

The focus of MB HSI is on generic models enabling 

optimizing the system value, which is the life-cycle 

accumulated utility. The system utility is based on the 

performance, reduced by the operational costs. 

Operational utility 

In practice, the system utility varies during the system 

evolution. It grows during the initial learning phase, it fades 

out when the system is getting old.  

Operating in exceptional situations 

A key hurdle to maximizing the system utility is the 

difficulties that the operators experience when the system is 

in exceptional situations (Zonnenshain & Harel, 2015)[56]. 

The reason for this is that regular training targets normal 

conditions. During normal operation, the operators 

encounter exceptional situations only occasionally, which 

is not sufficient for effective learning. Whenever they 

encounter an exceptional situation, they waste too much 

time trying to find their way around it. For example, 

informal studies on the productivity in text editing indicate 

that about half of the time is wasted in recovery from 

errors. 

The return on investing in exception management 

Many developers are not aware of the risks involved in 

operating in exceptional situations. The means to avoid 

exceptional situations and to support exception 

management may be integrated into the model used to 

design the HSI. Models enable saving development costs 

by enforcing seamless adaptation to design changes.   

Utility-critical systems should incorporate means, including 

sensors and data analytics, for informing the operators and 

the developers about the time they could save. The 

infrastructure for exception management may include 

special routines for saving the time that operators typically 

waste in handling exceptional situations. 

Modeling 

Scientific findings are documented in models, obtained in 

frameworks of meta-models of information behavior 

(Wilson, 1999)[54]. For example, Following Fuhs 

(2008)[13] description of hybrid vehicles, Boy (2012)[6] 

suggested modeling the system operation in the form of 

orchestrating human-centered design.  

The goal of model-based engineering is to enable the 

development of more complicated systems than is possible 

with document-centric approaches.. Models enable 

participation by diverse SMEs in ways previously either not 

possible or less efficient. For example, Harel (1999) [16] 

demonstrated a model-based approach to usability testing, 

by capturing and analysis of instances of difficulties in 

using Windows applications. Also, Harel et al. (2008)[21] 

demonstrated a model-based method for automated analysis 

of website navigation based on usage statistics. Through 

simulation, models provide a gradual, seamless, reliable, 

modular transition from requirements to the 

implementation of digital twins and the final system. 

Digita twins 

A definition of a digital twin adopted by SEBoK is “a high-

fidelity model of the system which can be used to emulate 

the actual system”. The concept of digital twins is based on 

the concept of virtual prototyping, dated in the 80s, in 

which a model was used to replace system units by 

emulation. This features enables early integration, by using 

virtual units instead of the real components that are not 

ready yet for the integration. This feature was recently 

adopted for systems engineering in the form of digital 

twins.  

The article assumes that the digital twin is essential for 

controlling the system operation according to the STAMP 

paradigm: the post-deployment emulation enables detection 

of incidences by comparing the output of the emulated unit 



with that of the real unit, as depicted in the following 

figure: 

 

The article assumes that digital twins may be integrated in 

MBSE according to the following figure: 

 

Therefore, MBSE is essential for seamless change 

validation based on a digital twins  

Model-based system integration (MBSI) 

The methodology of model-based engineering is inspired 

by a similar methodology of rapid prototyping, developed 

in the framework of software engineering in the 70s 

(Grimm, 1998)[15]. .  

MBSI is the modern systems engineering version of 

software prototyping, a concept explored in the 80s Model-

based system integration (MBSI) enables early integration 

by simulation, resulting in shortening the integration phase 

and reducing the development costs. (Luqi, 1989)[34]. 

MBSI may consist of project-specific, functional features, 

as well as universal features applicable to maintenance, 

resilience, training, etc. The universal features may apply to 

various domains and industries.   

Human factors 

Human factors may apply to any human agent within or 

outside the system. However, in this study the focus on the 

effect of the operators on the system utility  

Human performance 

The system view of performance is based on the wrong 

assumption that the operators do their job perfectly. The 

human factors view of performance focuses on bottleneck 

due to the limitations of the human operators, such as 

attention deficit, stress, when the attention demands are 

high, such as in uncertainty, or in multi-tasking (e.g. 

Wickens, 1992)[52].  

Rationality 

Another topic is that of proper operation. This term implies 

that we expect the operators to be rational. The article 

assumes that rationality is vague. Rationality relies on the 

information that the operators perceive. However, the 

information that they receive is not stable and not objective. 

It is subjective and dynamic as illustrated in the following 

figure: 

 

The article advocates the HF version of Murphy’s Law: if 

the design enables the operators to fail, eventually they 

will. In particular, improper usage such as failure to handle 

situations with which the operators are not familiar, should 

be attributed to design mistakes. Therefore, the article 

advocates a design goal of protecting the system from 

human errors. According to the proactive version of 

Murphy’s Law, it is the design’s responsibility to prevent 

situations in which the operators might fail.  

Errors 

Errors are essential for learning (Wiener, 1948)[53]. 

However, errors are costly. Studies about the sources of 

accidents indicate that most of them are typically attributed 

to human errors, or improper usage. The factors mentioned 

by the reviewer are in the category of human errors. Human 

errors explain most accidents in the air (60%, 

PlaneCrashInfo 2014)[37] sea (80%, Baker & Seah 

2004)[2], driving (90%, Singh 2015)[44], and in the 

industry (60-80%, Kariuki & Löwe 2006)[31]. Human 

errors are considered as the primary source of operational 

loss: by accidents, damage to property, low productivity, or 

user dissatisfaction (Landauer, 1995)[32]. Many of the 

usability issues in operating consumer products, such as 

home TV, are commonly attributed to use errors 

(Zonnenshain & Harel, 2009)[55]. The article assumes that 

most usability problems may be attributed to human 

limitations to perform perfectly in extreme conditions, such 

as exceptional situations due to design mistakes and bugs.  

Errors are incidental. Weinberg (1971)[50] reported on 

typical subconscious design mistakes, due to egocentric 

programming, hampering the productivity of the computer 

users. Shneiderman (1980)[42] promoted the concept of 

egoless programming suggested by Weinberg, and 

proposed few principles for avoiding such design mistakes. 



Norman (1983)[35] classified activity errors due to 

omission, or to taking the wrong action. A wrong action 

may be either a slip or a mistake. A mistake may be in 

situation perception or in deciding which action to take. 

However, following Bainbridge observation about ironies 

of automation (1983)[1], Weiller & Harel (2011)[49] argue 

that judgment errors under stress are due to relying on 

irrelevant prior experience. 

The meaning of the term "human error" or “improper 

usage” is ambiguous. Accident analyses indicate the most 

of these instances involve several factors, most notable are 

component malfunction, operators’ errors. In many cases 

the loss is attributed ad hoc to the person who happened to 

be on duty at the time of the event (Dekker, 2007)[11].  

It is not in the scope of the system design to enforce proper 

operation, as expected or specified by the developers. 

Following Hollnagel (1983)[25] the model presented here 

assumes that the term “error” is an engineering bias, 

diverting the accountability for design mistakes, resulting 

in failure to assist in the collaboration with the operators. In 

attributing the incident to the trigger, instead of the 

situation, the system stakeholders typically become sloppy 

and careless about the design features that could have 

prevented the incident (Harel, 2010)[19], as demonstrated 

in the following figure: 

 

 

According to Zonnenshain & Harel (2015)[56] the term 

refers to activities of the responsible organization intended 

to divert the focus of investigations from the management 

to the operators. For example, Harel (2011)[20] analyzed 

various ways in which vendors of equipment for medical 

alarms infect the standards by diverting the accountability 

for failure to the operators. The implication of this 

observation is that rather then investing on error analysis, 

the design should focus on preventing failure. 

Limited attention capacity 

The human attention capacity is limited. When under stress 

the operators are liable to err, even when they pay their full 

attention to the operation (Clark and Dukas, 2003)[8]. For 

example, during surgery, the surgeon may remove a tumor 

very carefully, but might miss the fact that the patient is 

bleeding from another part of the body. 

Situation awareness 

This concept is about the operator’s failure to perceive the 

system and environmental elements as expected, or to 

comprehend the significance of the situation perception. 

Situation awareness is critical for successful decision-

making across a broad range of systems (Endsley, 

1995)[12]. For example, Harel (2006)[17] explained that 

alarm reliability and quality are critical for enforcing proper 

reaction to the alarms. 

Usability 

Believing that it is the designer’s responsibility to reduce 

the costs of operation, Norman and Draper (1986)[36] 

explained that to avoid the loss, the system design should 

be user-centered. Shneiderman (1986)[43] proposed eight 

golden rules for user interface design. The quality of 

usability affects the operator’s productivity, system safety, 

and the experience of using consumer products. 

HSI essentials 

The article assumes that HSI is a special case of system 

integration, in which we regard the human operators as a 

system unit, with special features, defined externally, by 

God. A primary challenge of system integration is the 

integration between engineered and human components. 

This section presents various definitions from various 

scientific and industrial sources used for modeling the HSI.  

HSI engineering 

HSI is a special focus of system integration. As such, HSI 

engineering should descend from systems engineering. 

Applying system thinking (Leveson, 2004)[33], HSI should 

focus on rare situations, and the HSI models should focus 

on operational rules (Harel & Zonnenshain, 2019)[23].  

HSI reliability 

HSI reliability is a term used to describe an ideal virtue, of 

maximizing the system utility. HSI reliability is a 

descendent of operational reliability, which is a sibling of 

software reliability. Operational reliability may be defined 

as “The ability of an apparatus, machine, or system to 

consistently perform its intended or required function or 

mission, on demand and without degradation or failure” 

(Berard, 2013)[5].  

The term HSI reliability refers to the system's capability to 

minimize the costs of operating in extreme conditions. The 

article advocates the HF version of Murphy’s Law: if the 

design enables the operators to fail, eventually they will. In 

particular, improper usage such as failure to handle 

situations with which the operators are not familiar, should 

be attributed to design mistakes. Therefore, the article 

advocates a design goal of protecting the system from 

human errors. According to the proactive version of 

Murphy’s Law, it is the design’s responsibility to prevent 

situations in which the operators might fail (Harel, 

2011)[20]. 



HSI complexity 

A primary hurdle to HSI reliability is operational 

complexity. HSI complexity is about possible confusion, 

and it applies also to very simple systems. Two common 

error modes attributed to operational complexity are 

physical confusion, such as control confusion, and logical 

confusion, such as mode confusion.  

Control confusion is an instance of applying a wrong 

control due to similarity or proximity, as illustrated in the 

following figure: 

 

This type of complxity applies to many consumer systems, 

such as home appliances: Laundry, drier, air conditioner, 

furnace and oven. It also applied the many B-17 accidents 

in WW II. Control confusion may be resolved within the 

discipline of HCD. Often, control confusion may be 

resolved by redundancy analysis, according to the principle 

of Occam’s Razor. 

Mode confusion is an instance of activating a control in the 

wrong mode, resulting in an unintentional effect. Examples 

of critical mode confusion are of activating setup or 

maintenance features during functional operation. 

The number of situations grows exponentially with the 

number of states. Most of them are exceptional. Following 

Weaver (1948)[43] complexity may be defined as the 

degree of difficulty in predicting the properties of a system 

if the properties of the system's parts are given. Sheard and 

Mostashari (2011)[40] categorized complexity as either 

structural, dynamic, or socio-political.  

Many incidences of operational difficulties are due to 

inconsistent system response to the operator’s commands. 

Accordingly, we may define HSI complexity in terms of 

the amount and variety of condition-dependent activities. 

HSI complexity may be defined in terms of conditional 

activity, such as the conditions for human-machine 

interaction or inter-unit coordination, namely, the 

consistency of the reaction to events. If the design enables 

various reactions to a specific event, depending on the 

operational scenario, then this event is error-prone, 

contributing to the complexity. Reducing the HSI 

complexity is critical for maximizing the HSI utility. 

The article proposes to prevent unintentional mode setting 

by impeding the transition, as illustrated in the following 

figure: 

 

The article proposes to resolve this kind of problems by 

scenario-based design and testing.   

HSI hazard control 

A hazard is a potential source of loss. Hazard control is 

used in industry to mitigate the risks of hazards. HSI hazard 

control is a method of hazard control focusing on HSI. It is 

inspired by methods of Statistical Process Control (SPC, 

Wheeler & Chambers, 1992)[51] and of Statistical Quality 

Control (SQC, Shewhart, 1931)[41]. HSI hazard control 

eliminates the risks of exceptional events and of operating 

in exceptional situations.  

Prior studies 

The prior art is an ongoing study on protecting systems 

from operational surprise, with focus on human errors. 

Most of it is documented in an article by Zonnenshain & 

Harel (2015)[56], which was revised by Harel & 

Zonnenshain (2019)[23]. 

Model-based HSI  

Model-based HSI is part of model-based engineering, 

focusing on the integration between the system and its 

operators.  

Many developers are not aware of the risks of operating in 

exceptional situations. Therefore, they do not gain the 

education and resources required to mitigate these risks. 

Model-based design enables seamless adaptation to design 

changes. Rule-based models enforce mitigating the risk of 

operational complexity. Model-based HSI facilitates the 

implementation of the HSI part of the digital twin 

(Barricelli et al., 2019)[3]. 

HSI modeling 

Hollnagel (2006)[26] proposed two ways for modeling the 

system operation. The proactive approach is about how to 

describe normal behavior, and the reactive approach is 

about how to describe extreme events. Most failures are 

often attributed to latent defects, wear-out, unexpected 

environmental conditions, and improper usage (both 

accidental and malicious) According to the proactive 

approach to failure, the system design should support the 
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operation also in extreme conditions. HSI modeling is a 

hybrid approach, in which we define normal behavior 

proactively, and we apply learning from failure. The 

orchestra illustration is proactive-oriented. The reactive 

part is by serendipitous learning from incidences (e.g. 

Copeland, 2020)[10].   

Learning from incidences 

Incidence modeling may be based on four types of 

evidence: anecdotal, statistical, causal, and expert evidence 

(Hornikx, 2018)[27]. By its nature, anecdotal evidence is 

subject to systematic deviation from the norm and/or 

rationality in judgment (Haselton et al. 2005)[24]. In HSI 

reliability studies, these biases need special attention.  

Modeling may be based on the gradual abstraction of 

incidences and solutions. An incidence is an instance of 

crossing the limits of the performance envelope. The 

reactive part o HSI modeling is by cross-domain learning 

from incidences.  

We may distinguish between two types of incidences: those 

due to rare events and those due to daily, low-cost events. 

Taleb (2007)[47] argued that it is impossible to predict 

incidences due to Black Swans (rare events) because a-

priori we do not have the data required for the prediction. 

Data analytics 

Tracking tools enable capturing and measuring the costs of 

daily, low-cost events (Harel, 1999)[16]. Harel et al. 

(2008)[21] demonstrated a way to apply data analytics in 

automated usability testing, and Harel (2009)[18] 

demonstrated that data analytics may be used to identify 

problem indicators. Universal tracking is crucial also for 

enabling learning from rare events.  

HSI meta language 

Jacobson (1987)[30] described a technique used at Ericson 

to capture and specify system requirements based on use 

cases. Today this technique is part of the Universal Meta 

Language (UML), commonly used in software design. The 

concept of use cases was migrated to systems engineering, 

in the framework of SysML. They are key to describing the 

designer’s view of the system behavior, required to support 

Model-based Systems Engineering (MBSE). The operator’s 

view of the use cases is called usage scenarios (Spool, 

2014)[45]. HSI Meta Language (HSIML) is a meta-

language used for the HSI design.  

HSI scenarios 

HSI scenarios are the HSI view of use cases/ usage 

scenarios. They are used for both design and testing. HSI 

complexity may be reduced by assigning the activity to 

scenarios.  

HSI statecharts 

SysML offers a simplified version of UML statecharts for 

graphical representation of state transitions. This kind of 

representation is not adequate for modeling the interaction 

between state machines. The problem is that events 

designed using SysML statecharts are error-prone. The HSI 

version of statecharts supports describing various attributes 

of mutual effects between state machines, as well as 

enforcing error-free state transitions.  

HSI constraints 

According to the principles of cybernetics, to avoid failure, 

the system should control its behavior, similarly to animals 

(Wiener, 1948)[53]. This principle is key to endorsing HSI 

reliability. HSI reliability relies on operating according to 

rules. In 1972 Alain Colmerauer and Philippe Roussel 

developed Prolog, a rule-based computer language (Cohen, 

2001)[9]. Shapiro (1983)[39] studies the using Prolog for 

algorithmic program debugging. Leveson (2004)[33] 

adopted the principles of cybernetics and proposed the 

STAMP paradigm, applying the principle of self-control in 

a hierarchy of system views. The Prolog language 

demonstrates the feasibility of the STAMP paradigm. HSI 

modeling focuses on universal methodologies of rule-based 

design, for the sake of reducing the HSI complexity. HSI 

constraints are operational rules constraining the HSI 

(Harel & Zonneshain, 2019)[23]. Typically, these 

constraints are scenario-dependent. 

HSI exceptions 

An exception is a situation beyond the performance 

envelope. HSI exception extends the concept of software 

exceptions, introduced in LISP (Gabriel & Steele, 

2008)[14]. The extension is in the structures of static, 

dynamic, or behavioral exceptions. The original software 

exception has two components: a probe in the program, and 

an exception handler. The probe is actuated when the 

program reaches this probe. In contrast, HSI exceptions 

reside in the system situations and events. The exceptional 

situations are handled by scanning the situational 

constraints, and the exceptional events are handled at the 

event handling. 

HSI resilience 

According to SEBoK, resilience is the ability to maintain 

capability in the face of adversity. Jackson and Ferris 

(2013)[29] presented principles for assessing and 

improving the resilience of engineered systems across their 

life cycle. HSI resilience is about HSI factors in resilience 

assurance (Zonnenshain & Harel, 2015)[56]. 

For example, we may explore various collaboration options 

in a minimal system, consisting of a simple engine with 

two states: On and Off, operated by a switch with states: 

On and Off. The functional option is complicated when the 

operator is required to support early detection and 

identification of malfunction. How will the operators know 

about instances of malfunction? How will they know if the 

problem is with the engine or with the switch? How will 

they identify problems in the connections? How will they 

know when the engine starts too slowly?   

An error-proof design may include sensors of the engine 

and switch states, and an indication when the state are not 

compatible with each other. In addition, the design may 

include indication of these states, to facilitate the 

troubleshooting. The sensors may also be used to notify on 

problems of starting or stopping the engine too fast or too 

https://en.wikipedia.org/wiki/Alain_Colmerauer
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slowly. The following figure illustrates the inter-state 

transitions as system variables.  

 

The system may record the transition delays and generate 

distribution functions for these delays. The system design 

may make use of the distribution parameters, and include 

identification of extreme values, as well as extra means for 

alarming and emergency shut-down. The following figure 

illustrates how the design may define exceptional delays, 

and how the system may respond to exceptions: 

 

In the example, the threshold of sigma may be used for 

alarming, and the threshold of two sigma may be used for 

safe-mode operation, such as emergency shut down. 

HSI accountability 

The article assumes the proactive version of Murphy’s 

Law, attributing operational problems to design defects, of 

enabling the operational problems. The article assumes a 

variant of Taleb’s Black Swan theory (2007)[47], 

illustrated in the following figure: 

 

 

Objective of the present study 

The puzzle of HSI consists of various disciplines, such as: 

Task-oriented disciplines: 

 SCD – System Centered Design 

 SoS – System of Systems 

 HITL – Humans In The Loop 

 HCD – Human Centered Design 

 UID – User Interface Design 

 HCI – Human Computer Interaction 

 TDD – Task Driven Design 

Risk-oriented disciplines: 

 HF – Human Factors 

 Cognitive Engineering 

 Resilience Engineering 

This study focuses on the a discipline not elaborated yet, 

which is Activity-oriented Design (AoD) 

 

The existing knowledge assumes that the system design 

should focus on performance, and assign low priority to 

failure prevention. MBSE is based on project-specific 

models. The practices for preventing failure and for safe-

mode operation are mostly undocumented industry and 

domain specific. The Black Swan theory about learning 

from rare events implies that we cannot foresee the 

surprise, and the common design practices do not include 

means to capture incidences.  

The article proposes extending the existing knowledge: 

 A way to capture incidences 

 A way to develop models of the incidences captured 

 A general, seven-layer model of system operation 

 Sets of general mini-models (GMM) enabling to 

prevent errors.  

This methodology has been developed gradually since 

2008. Parts of it were presented in the INCOSE 2015 

conference and in the HSI2019 conference. 

The primary objective of this study was to develop a 

prototype that demonstrates the feasibility of a universal 

HSI model, which may be applied and customized for the 

design of utility-critical systems. 

METHOD 

Method overview 

The article presents a model of HSI focusing on the utility. 

It shows the feasibility of modelling the system operation, 

highlighting key critical failure modes. Also, the article 

presents a method used for developing this model, of 

learning from rare events.  

The method applied in this study is actually a variant of the 

SSM methodology, which is critical system thinking, in 

generating patterns of system resilience (Checkland, 

2001)[7], which is in the domain of Concept-Knowledge 

(C-K) theory employed in the design of social systems 

(Hatchuel et al., 2011)[28]. The goal is to identify patterns 

of failure, and to assign method employed in various 

industries. The methodology for pattern generation is based 

on abstraction of the system elements and activity, and 



matching abstracted elements of various incidences. This is 

illustrated in the following figure: 

  

The first stage in the methodology generation is to create a 

bank of generic failure modes, based on failure analysis. 

The following figure illustrates a way to document failure 

analysis when applied to the TMI accident: 

 

The second stage is abstraction. We accumulated evidence 

from other systems with similar problems. For example, 

there are several types of appliances that share the same 

redundant Delay feature 

The methodology was developed gradually. An initial set 

of 11 patterns was proposed in 2008 in a working group on 

risk management of the Israeli chapter of INCOSE. After 

going through a bunch of failure modes, proposed by the 

workshop participants, we may come up with a simple 

model of system failure such as the one depicted in the 

following figure: 

 

Then we established a dedicated working group on system 

resilience, in which we examined various possibility of 

failure modes found in 67 incidences. The outcome of this 

examination was a comprehensive model of system 

resilience. The model was reported in 2015 INCOSE 

conference (Zonnenshain & Harel, 2015)[56]. An updated 

version of this model is demonstrated in the following 

figure. 

 

Based on this model, we examined a pattern of failure 

modes of activating a maintenance-only feature in 

functional operation, as described above. We looked at 

common methods for protecting from incidences employed 

in the industry and we came up with two approaches: a. 

disabling the activation of maintenance-only features 

during functional operation, and b. warning about such 

instances. This defines two patterns of preventing such 

mishaps, defined as operational rules. BTW, these rules 

apply also to simple systems, such as home appliances. 

The next stage is inter-disciplinary task allocation. It is the 

responsibility of the systems engineer, and/or the safety 

engineer, to select the proper patterns, and it is the 

responsibility of the HCD practitioner to design the 

warning messages, the rebound feedback, and the 

notifications to the operators.  

Finally, we had a validation test of the patterns. Matched 

the patterns with each of the incidences in our sample, and 

we obtained a pie chart representing the power of the test, 

as follows: 

 



For 96% of the incidences we matched at least one pattern 

from our collection. This was in 2015. Today our models 

are much more elaborated. 

Theoretically, we need to quantify the value of this model, 

and to prove that the added-value of applying it is 

significant. Ideally, we may want to compare projects that 

employed this model with project that did not employ it 

yet. At this stage of the theory development this is 

impossible, because we cannot get the data that should be 

used for a comparative study, simply because there is no 

project yet that tried using the method. Even if we had such 

project, this method should be of low validity, because 

projects do not disclose their values.  

A way to work around this limitation is by scoring made by 

intuition-based evaluation of experts in HSI design. Today, 

there are no experts yet that may evaluate the method, 

because it has not been published yet. The practice about 

this kind of preliminary situation is to get a consensus, 

similarly to that of the UML/SysML.  

Most systems engineering conventions and practices are 

adopted by consensus, based on intuition, commonly called 

“common sense”, not supported by research, for simple 

reason: it is impractical to design experiments on system 

development, in which the scoring is the real value, such 

that the conclusions will be of high face validity. It is 

impossible to apply proper experimental design to such 

paradigms. 

This is the kind of support that we may expect when 

presenting new theories to practitioners. This discussion 

applies also to the other goal of the study, namely, 

demonstrating the feasibility of learning from rare events. 

A first step towards enabling learning from human errors 

and unexpected events, should be to develop tools for 

tracing and exploring the system activity. 

The prototype of a universal HSI model was developed in 

two stages: 

Defining the GMMs 

A preliminary version of the GMMs was developed earlier 

by Zonnenshain & Harel (2015)[56]. These GMMs were 

defined by analysis of 67 incidences, as patterns of typical 

system activity involved in the incidence. The present study 

repeated the analysis of these incidences, based on 

knowledge gained by analysis of additional case studies.  

Sampling 

The study was based on 67 case studies reported elsewhere. 

The case studies are of three categories. Most of them are 

well-documented accidents. Others are anecdotal 

incidences due to minor flaws, reported by members of 

working groups on resilience assurance. Few case studies 

are of recurring, low-cost incidences. 

An example of a case study is of the Three Miles Island 

accident, presenting two modes of failure of safety features:  

 The backup pump was disabled during power 

generation 

 PORV did not close after pressure release, backup 

pressure release was not provided. 

Model development 

The GMMs may be developed gradually as incidences of 

new domains are added to the sample. Each cycle including 

the following activities: 

 Behavior abstraction. This activity is the outcome of 

the incidence analysis. The goal of behavior 

abstraction is to transform domain-specific terms into 

universal, cross-domain terms. The abstract version of 

a specific incidence is an incidence model. 

 Model matching. The objective of model matching is 

to identify common failure modes, namely, patterns of 

activities leading to incidences.  

 Protection evaluation. The goal of protection 

evaluation is to detect and evaluate design features 

that may enhance reliability, namely, that may cope 

with the failure mode. Typically, this activity is 

serendipitous. 

Defining the structure of the universal HSI model 

The structure definition was based on analysis of the 

relationships between various entities that play ops in the 

system operation: functions, units, risks, states, events, 

reaction, resilience.  

RESULTS 

This section presents a prototype of a universal HSI model 

developed in this study, consisting of seven layers of 

GMMs; structural, operational risks, functional, static, 

dynamic behavioral, and resilience models.   

 

The universal HSI model highlights the role of situational 

exceptions, as well as the role of scenarios, which should 

reduce operational complexity by information hiding, in 

support of direct mapping from intention to action. 

A structural layer 

This model describes a system recursively, in terms of 

human agents (users, operators, artificial agents (processes, 

tools …) and sub systems. The system is a socio-technical, 

in which the operators are part of the system, but the users 

are external. The subsystem is linked strongly with the 



operators, and loosely with the users. The focus here is on 

the operators, which may typically affect the activity more 

than the other human participants. Each of the following 

models may apply to each subsystem defined by this 

recursion. 

Entities of the structure layer 

Common assumptions about the machine and the operator’s 

roles are: 

 The machine’s role. The machine needs to trace 

situation changes, and to inform about them to the 

operators. The information should include an 

indication of risky situations and critical events, and 

instructions for mitigating the risks. 

 The operator’s role. The operators need to select an 

optional response according to the operational 

scenario. 

 The HSI. The integration’s role is to constrain the 

activity to the design scope, and to prioritize the 

operational options according to risk considerations. 

A functional layer 

A functional model describes the operational context and 

features of the human-machine interface (HMI) required to 

accomplishing an operator’s task. These include activating 

the system functions and maximizing the performance, as 

well as practices for risk reduction.   

Entities of the functional layer 

In MBSE, the following entities are part of the data 

structure: 

 Tasks. These are the operators’ view of the system 

functions 

 System state. A value of a discrete state variable such 

as power on/off. 

 Unit state. The sensory or virtual operational state of 

subunits, such as enabled/disabled. 

 Scenario. Any system state significant to the 

operators’ view of the operational situation. Examples 

are operational modes (routine, testing, 

maintenance…) 

 System variables. A system variable may be any 

performance variable, any risk variable, or any state of 

any system component.  

 Performance variables. Measures of the system 

performance, such as vehicle speed 

Functional rules  

These include the following types of rules:  

 Universal rules. These apply to all human-operated 

systems, such as about the matching between the 

operator’s intention, represented by scenarios, and the 

values and changes of system variables. 

 Interaction rules. These apply to the human-machine 

coordination. 

 Industry-specific rules, such as those derived from 

physical laws. 

Common design practices 

The risk is about the operators not noticing the exception. 

The design principle is that the system should inform the 

operators about exceptions and provide explanations about 

the risks of optional possible responses. 

A risk layer 

This model describes various ways in which the operation 

might fail. These risks are often attributed to operator errors 

(Zonnenshain & Harel, 2015)[56]. 

Entities of the risk layer 

The risks involved in the system operation include: 

 Omission of a necessary action 

 Mistake. Selecting an improper control  

 Operator’s slip. Unintentional activating the wrong 

control  

 Mode error. Error in selecting a control while 

assuming the wrong conditions 

 Risk variable. Measure of the operational risks, such 

as operational temperature 

 Safety limits. High and low thresholds of safe values 

of system variables 

 Normal limits. High and low thresholds of normal 

values of system variables 

Common design practices  

Protection features including: 

 Risk preview. Display potential risks based on trend 

analysis. Prediction by statistical analysis of 

measurements of system variables 

 Scenario-based interaction. Avoiding critical errors 

in an emergency, due to the limited attention capacity 

of the human operators 

 Unconditional action selection. Seamless operation 

obtained by enforcing direct mapping from intention 

to action through scenarios, enabled by the consistent 

effect of control activation.  

A static layer 

A static model is a representation of the operational 

situations. The design goal is to notify the operators about 

the system operating in exceptional situations. The core of 

the static model is an abstraction of the system situations, 

with a focus on exceptional situations.  

Entities of the static layer 

Normal behavior should be defined in the operational 

specification. Abnormal behavior should be defined by 

instances of diversion from the normal behavior.  

In MBSE, the following entities are part of the data 

structure: 

 Situations. The system situation may be represented 

by system variables. A situation is defined as a set of 

values of a selection of the system variables. 

 Normal situations. A situation is normal if it 

complies with any of the rules describing normal 

situations. For example, a simple system consisting of 

a device and a power switch may have two rules 



defining normal situations: Operative scenario, when 

the switch is On and the device is operating, and Non-

operative scenario, when the switch is Off and the 

device is not operating. 

 Exceptional situations. Any situation that does not 

comply with any of the rules defining normal 

situations is exceptional. In the example of the simple 

system above, the exception may be expected, when 

the switch is On and the device is not operating, or 

unexpected, when the switch is Off and the device is 

operating. 

 Risk indicators. The values of continuous 

performance or risk variable may be compressed to 

five states: normal, risky low, risky high, forbidden 

low, and forbidden high.  

 Static design scope. The situations (system states) 

that the design supports. 

Abnormal situations are defined as the complement of 

normal situation: a situation is classified as abnormal if it is 

not a member of the set of normal situations, in the context 

of the active scenario. Similarly, an event is classified as 

abnormal if it is not a member of the optional events 

specified for the active operational stage (such as procedure 

step). 

Situational rules 

These rules enable the handling of exceptional situations. 

 Basic rules. Inter-state constraints, inter-unit 

coordination, scenario-unit coordination, expected 

exceptions, enable the identification of expected 

exceptions. 

 Derived rules. Enable detection of unexpected 

exceptions, excluded from the basic rules 

Common design practices 

Common practices are based on integrating human factors 

in process hazard analysis (PHA), commonly classified as 

hazard and risk assessment techniques, such as FTA, 

FMEA, and HAZOP (Baybutt, 2002)[4].  

A dynamic layer 

A dynamic model is a representation of the operational 

activities. The design goal is to alert the operators about 

transitions from normal to exceptional situations. The core 

of the dynamic model is an abstraction of the system 

events, with a focus on unexpected events (Harel & Weiss, 

2011)[22].  

Entities of the dynamic layer 

In MBSE, the following entities are part of the data 

structure: 

 Events. An event is an instance of a situation change. 

 Normal events. An event is normal if it complies 

with any of the rules describing that it is normal 

before the situation change. For example, the simple 

system above may have two rules defining normal 

activity: Turning the switch On when the situation is 

the Operative scenario, and turning the switch Off 

when the situation is the Non-operative scenario. 

 Expected diversion. This applies to any event 

complying with a rule about transitions from normal 

to an exceptional situation. An example from the 

simple system above is the device being stopped due 

to malfunction. 

 Dynamic design scope. These are the system events 

that the design supports, including normal events and 

expected diversion. 

 Unexpected diversion. This is an event of transition 

from normal to an exceptional situation that does not 

comply with any of the rules. In the example of the 

simple system above, the event of turning the switch 

On while in the Operative scenario, or turning the 

switch Off while in the Non-operative scenario, are 

exceptional. 

 Slip. This term refers to unintended diversion. 

 Surprise / Diffusion / chaotic event. Any events 

resulting in a transition to a situation out of the 

dynamic design scope. 

Activity rules 

These are protocols governing  

 Operational procedures. Defining operational 

procedures and constrained control. 

 Exception management. Controlling the transition to 

exceptional situations 

Common design practices 

The risks are about the operators not noticing the diversion. 

The design principle is that the system should warn the 

operators and enable graceful rebounding from unintended 

events.  

A behavioral layer 

A behavioral model is a representation of the responses to 

events. The risks are that the operators might fail to 

respond properly to the rebound message, or that they do 

not understand the risks associated with the alarms, or they 

fail with the troubleshooting. The design goal is to mitigate 

the risks of wrong responses to events. The core of the 

behavioral model is an abstraction of typical system 

responses to exceptional events, with a focus on risk 

reduction.  

Entities of the behavioral layer 

In MBSE, the following entities are part of the data 

structure: 

 Rebounding. Automated rejection of a risky event, 

such as an operator’s slip. 

 Hazard. An event with evidence about risk, such as 

resulting in an exception. 

 Trip. An automated interruption in the system 

operation, aiming to avoid failure. 

 Alarm. An automated alerting message to the 

operators about a hazard. 

 Troubleshooting. An indication of a possible source 

for an alarming situation. 

Behavioral rules 

Rules applicable to responding to events include: 



 Scenario compliance. The automated setting of states 

assigned with the scenarios. 

 Alarm. The sound attributes should signify the risk 

level. 

 Protocols. The response to exceptional events may be 

phrased as protocols for risk detection, recognition, 

and identification. 

Common design practices 

The following practices are commonly employed to 

mitigate the risks are about the unexpected response to 

events when in an exceptional situation: 

 Rebound. The rebounding from an operator’s slip is 

by enforcing the operators’ understanding of the 

rebound message. 

 Trip. The information in the trip message is displayed 

gradually, supporting both common and rare trips. 

 Troubleshooting. Based on information from sensors, 

enabling seamless identification of the source for the 

alarm. 

A resilience layer 

A resilience model is a representation of safety backups. 

The design goal is to mitigate the risks of operating with 

backup features missing or unavailable. The core of the 

resilience model is an abstraction of secondary risks due to 

the failure of safety features.  

Secondary risks 

Rule-based design may facilitate the interaction and 

coordination in normal operation, but might also hamper 

the control in an emergency. Weak constraints may 

facilitate emergency control, but the result of operating in 

exceptional situations might be unexpected.  

Entities of the resilience layer 

In MBSE, the following entities are part of the data 

structure: 

 Safety feature. A feature intended to secure the 

system's safety. 

 Secondary risk. Risk of potential failure of a safety 

feature. 

 Safety backup. A safety feature intended to use as a 

backup in case of a secondary failure. 

Resilience rules 

Rules applicable to resilience include: 

 Situational rules. Constraining the availability of 

safety features  

 Activity rules. Protocols governing the transitions to 

exceptional states of safety features. 

Common design practices 

The following practices are commonly employed: 

 Alerting. Alarming when the backup feature stops 

being available in functional scenarios 

 Reminder. Continuous notification on unavailable 

backup while in functional scenarios 

 Rebounding. Prevent going functional when the 

backup feature is not available. 

DISCUSSION 

Engineering 

As discussed by Harel & Zonnenshain (2019)[23] the 

engineering of HSI is based on defining operational rules, 

which define exceptions by exclusion from normal 

behavior. 

Evaluation 

For evaluating the model, we may employ the Layer Of 

Protection Analysis (LOPA) technique, commonly used in 

the process industry for assessing the protection needs. The 

evaluation is based on testing the effects of protection 

layers and calculating the potential risks (Baybutt, 

2002)[4]. 

Infrastructure 

Utility-critical systems should incorporate means, including 

sensors, trackers, recorders, and analyzers, for informing 

the operators and the developers about the time they could 

save. The infrastructure for model-based HSI may include 

special means intended to save the time wasted in handling 

exceptional situations. 

Customizing 

The seven-layer models are generic, applicable to various 

domains and industries.  To adapt it to a particular project 

these models need customization. The customization 

process is according to the order above, as the definition of 

each model depends on that of the previous one. 

Simulation 

The transition from the customized model to a prototype 

and/or digital twin should be automated. The automation 

may be based on simulation of the orchestrated version of 

the system, using standard software packages that process 

the custom parameters. 

Model development 

The models should be defined iteratively, each cycle is 

followed by evaluation. Typically, the evaluation ends up 

with a list of requirements for design changes, intended to 

reduce the operational complexity. The development might 

end when it is obvious that all known significant risks are 

removed. Criteria form ending the development may be 

based on the Service Integrity Level (SIL) evaluation 

method commonly applied in the process industry 

(Redmill, 2000)[38]. 

Testability 

Testing rare events is challenging. To enable testing 

exceptions the system should incorporate a special tester 

unit that fakes various kinds of faults, in various conditions, 

that the testing team can customize. A special scenario 

should be defined, which is part of the operational 

conditions. 

Adjustability 

The setting of the alarm and safety thresholds of the various 

risk indicators is a delicate design goal, aiming to balance 

properly the rate of nuisance of the alarms. A special utility 

may enable inform the system administrators about the 

margins of alarms and safe-mode operation. 



Conclusions 

Primary barriers to maximizing the utility are limitations of 

operating in exceptional situations, typically attributed to 

errors. These barriers result in hampering the system’s 

usability.  

The conclusions from this study are that we can learn from 

case studies drawn from various domains and industries, 

and formulate a universal HSI model. This model may 

consist of layers of GMMs, expressed in terms of 

operational rules. An example of a GMM is a set of rules 

for disabling maintenance activity during functional 

operation by assigning such activities to maintenance 

scenarios. 

Principles of HSI reliability may be phrased as scenario-

based rules and protocols for risk detection, recognition, 

and identification. A challenge for the 4th industrial 

revolution is to develop a methodology for cross-industry 

model-based integration design. This study demonstrates 

that we can define universal rules, suggesting that this goal 

is achievable.  

The article explores various protection patterns, but 

certainly not for all possible design challenges. It may be 

interesting to explore operational rules for various tasks, 

such as unsupervised learning or for adaptive systems. 

Some rules for adaptive systems were proposed elsewhere, 

based on the experience in using them, and by modeling the 

behavior in various situations. These rules rely on scenario 

definition, based on the skill level of the users. The 

measures examined may be obtained by statistics of 

measurements of the system performance. Validation of the 

rules may be conducted by analysis of the activity obtained 

by trackers of the system performance, using statistical 

metrics, followed by traditional usability testing in the 

corresponding scenarios. However, this is not in the scope 

of this article. 
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