
Scenario-based modeling

Avi Harel

Ergolight, Haifa 3433506, Israel

ergolight@gmail.com

Abstract. A primary goal of software design is to maximize operational utility.

The utility of software depends on the performance, constrained by the perfor-

mance envelope, defined by operational rules, which set the contract between the

software and the engineers. The performance envelope comprises rules for inter-

element coordination, and for setting and controlling the activity. Rule-based sce-

narios enable simplifying the definition of the performance envelope, which is

complicated otherwise. Scenario-based modeling (SBM) is a cross-domain ab-

straction of the operational rules. The objective of SBM is to support the design

of seamless, robust, coordinated interaction by the rules. The goal is to define

universal, generic models, which may be customized to a project through param-

eters. The models developed may comprise basic definitions of utility, perfor-

mance envelope, interaction scope, scenario structures and transitions, situational

rules, inter-element activity protocols, procedures for normal interaction, for ad-

justing the performance envelope, and for recovery from failure. The article pre-

sents basic principles, and a universal seven-layer model of normal and excep-

tional interaction. A way to validate a model-based interaction is by faking trig-

gers and exceptions, and by comparing the actual interaction with that of a virtual

twin. The article calls for developing and integrating tools for tracking, recording,

and analysis of the interactions in upcoming projects, which may enable assess-

ment of the actual costs of incidences, as well as validation of the universal mod-

els proposed here.

Keywords: Software Engineering, Systems Integration, Error Prevention,

Rare Events. Safety, Usability, Formal Methods, Scenario-based Modeling.

1 Objectives of Scenario-based Design

Primary goals in software design are to maximize the operational value and to support

agile development. This section describes a model of the operational value. The second

section describes how scenario-based modeling may contribute to mitigating the costs

of incidences. The third section discusses engineering considerations.

1.1 Operational Performance

A common practice for assessing the system value is in terms of utility. Operational

utility is often defined in terms of performance, which depends on the system purpose

mailto:ergolight@gmail.com

2

and functions. Typically, performance is associated with metrics such as throughput,

bandwidth, power consumption, etc. which are industry and domain specific. The prob-

lem with objective measures is that they do not represent implicit factors, which are not

testable, affecting the system value to the stakeholders.

Often, the implicit factors are more important than those that are measureable and

testable. Accordingly, the Cambridge dictionary defines performance using general

terms, as “how well a person, machine, etc. does a piece of work or an activity”. Typi-

cally, the term utility refers to the perceived efficiency in achieving the system primary,

goal, which is typically subjective, implicit, and biased.

1.2 The Performance Envelop

Systems are designed to optimize performance when operating in nominal conditions.

Hence, by definition, when diverting from the optimal conditions, the performance

should reduce. Moreover, in extreme conditions, the operation might fail, a situation

called ‘incidence’ (Hollnagel, 2006) [13]. The term ‘performance envelope’ refers to

the limits of the performance, namely, the situations in which the operation results in

incidences. An incidence is an event of invading the performance envelope.

The concept of performance envelope extends that of flight protection envelope, im-

posed to protect aircrafts in extreme conditions. It is an expression of the performance

reduction due to constraining the operation to avoid incidences. For example, the speed

of an airplane is limited by the stall threat and the Mach number, and the altitude is

limited by the Coffin Corner (Swatton, 2011)[20].

1.3 Operational Utility

The operational utility is affected not only by the design features, but also by the con-

straints, defined by the performance envelope. The utility is an expression of the actual

performance, when avoiding the risks of invading the performance envelope, as illus-

trated in the following figure:

Fig. 1. Utility-oriented development

https://dictionary.cambridge.org/dictionary/english/person
https://dictionary.cambridge.org/dictionary/english/machine
https://dictionary.cambridge.org/dictionary/english/piece
https://dictionary.cambridge.org/dictionary/english/work
https://dictionary.cambridge.org/dictionary/english/activity

3

In practice, the system utility varies during the system evolution. It grows during the

initial learning phase, it fades out when the system is getting old. Accordingly, the sys-

tem value may be defined as the accumulated utility over the life cycle.

1.4 The Costs of Incidences

Current design practices focus on functions, not on incidences. Therefore, most systems

are not equipped with means to detect and trace incidences. The actual costs of inci-

dence are known only when they are extremely high, namely, in accidents. In most

cases, they remain unknown. However, informal studies, such as those reported by

Harel (1999)[5] indicate that the accumulated costs of overlooked incidences are very

high, as depicted in the following figure:

Fig. 2. The effect of costly events

We may distinguish between two types of incidences: those due to rare events and those

due to daily, low-cost events.

Fig. 3. Risks of operational complexity

4

Taleb (2007)[21] argued that it is impossible to predict incidences due to Black Swans

(rare events) because a-priori we do not have the data required for the prediction. Ex-

plicit incidences are those that in hindsight turn out to be costly.

1.5 Modeling the Human Operator

Human Performance. Early computer-embedded systems suffered from usability prob-

lems, resulting in productivity and safety loss (Landauer, 1995)[15]. The traditional

view of performance is based on the wrong assumption that the operators do their job

perfectly. The human factors view of performance is about the limitations of the human

operators, such as attention deficit when in stress, when the attention demands are high,

such as in uncertainty, or in multi-tasking (e.g. Wickens, 1992)[24].

Operational Complexity. Costly incidences are associated with operator errors in han-

dling exceptional situations (Zonnenshain & Harel, 2015)[28]. The reason for this is

that regular training practices assume operating in normal conditions. During normal

operation, the operators encounter exceptional situations only occasionally, in a rate

that is not sufficient for effective learning. Whenever they encounter an exceptional

situation, they waste too much time trying to find their way around it. For example,

informal studies on human productivity when doing text editing indicate that about half

of the time is wasted on recovering from errors. The implication of this observation is

that rather then investing on error analysis, the design should focus on preventing fail-

ure. According to the proactive approach to failure, the system design should support

the operation also in extreme conditions.

Rationality. Another utility factor is about the operator’s rationality. Usually, we as-

sume that the operators are rational. Rationality relies on the information that the oper-

ators perceive. However, the information that they receive is not stable and not objec-

tive. It is subjective and dynamic (Harel, 2020)[8] as illustrated in the following figure:

Fig. 4. The rationality illusion

5

Errors. Since the 80th, cognitive psychologists study why and how people err (e.g.

Norman, 1983) [16]. It turns out that errors emerge spontaneously, in various circum-

stances, and that it is hopeless to expect that people may ever stop making errors. The

article advocates the human factors version of Murphy’s Law: if the design enables the

operators to fail, eventually they will. In particular, improper usage such as failure to

handle situations with which the operators are not familiar, should be attributed to de-

sign mistakes. Errors are essential for learning (Wiener, 1948)[25]. However, errors are

costly:

 High-cost errors. Studies about the sources of accidents indicate that most of

them are typically attributed to human errors, or improper usage. The factors

mentioned by the reviewer are in the category of human errors. Human errors

explain most accidents in the air (60%, PlaneCrashInfo 2014)[17] sea (80%,

Baker & Seah 2004)[2], driving (90%, Singh 2015)[19], and in the industry

(60-80%, Kariuki & Löwe 2006)[14].

 Minor errors. Human errors are considered as the primary source of opera-

tional loss: by accidents, damage to property, low productivity, or user dissat-

isfaction (Landauer, 1995)[15]. Many of the usability issues in operating con-

sumer products, such as home TV, are commonly attributed to use errors (Zon-

nenshain & Harel, 2009)[26].

The meaning of the term "human error" or “improper usage” is ambiguous. Accident

analyses indicate the most of these instances involve several factors, most notable are

component malfunction, operators’ errors. In many cases the loss is attributed ad hoc

to the person who happened to be on duty at the time of the event (Dekker, 2007)[4].

Modeling Human Errors. Errors are incidental. Weinberg (1971)[23] reported on typi-

cal subconscious design mistakes, due to egocentric programming, hampering the

productivity of the computer users. Shneiderman (1980)[18] promoted the concept of

egoless programming suggested by Weinberg, and proposed few principles for avoid-

ing such design mistakes. Norman (1983)[16] classified activity errors due to omission,

or to taking the wrong action. A wrong action may be either a slip or a mistake. A

mistake may be in situation perception or in deciding which action to take. However,

following Bainbridge observation about ironies of automation (1983)[1], Weiler &

Harel (2011)[23] argue that judgment errors under stress are due to relying on irrelevant

prior experience.

The Vendor’s Responsibility. The article advocates a design goal of protecting the sys-

tem from human errors. The article assumes a variant of Taleb’s Black Swan theory

(2007)[21], illustrated in the following figure:

6

Fig. 5. The design challenge

The article assumes that most usability problems may be attributed to human limitations

to perform perfectly in extreme conditions, such as exceptional situations due to design

mistakes and bugs. The article assumes the proactive version of Murphy’s Law, attrib-

uting operational problems to design defects, of enabling the operational problems. It

is the design’s responsibility to prevent situations in which the operators might fail.

Biasing. It is not in the scope of the system design to enforce proper operation, as ex-

pected or specified by the developers. Following Hollnagel (1983)[12] the model pre-

sented here assumes that the term “error” is an engineering bias, diverting the account-

ability for design mistakes, resulting in failure to assist in the collaboration with the

operators. In attributing the incident to the trigger, instead of the situation, the system

stakeholders typically become sloppy and careless about the design features that could

have prevented the incident (Harel, 2010)[6], as demonstrated in the following figure:

Fig. 6. Error Terminology

According to Zonnenshain & Harel (2015)[28] the term refers to activities of the re-

sponsible organization intended to divert the focus of investigations from the manage-

ment to the operators. For example, Harel (2011)[7] analyzed various ways in which

vendors of equipment for medical alarms infect the standards by diverting the account-

ability for failure to the operators.

7

1.6 Modelling the System Integration

Hollnagel (2006)[13] proposed two ways for modeling the system integration. The pro-

active approach is about how to describe normal behavior, and the reactive approach is

about how to describe extreme events. The need to present formal solutions was elab-

orated by Harel & Zonnenshain (2019)[11]. The means to avoid exceptional situations

and to support exception management may be integrated into the model used for the

interaction design. A method and procedure for modeling the system integration was

described by Harel (2021)[9]. The procedure has seven steps, according to a sever-layer

model of the integration. Integration modeling is a hybrid approach, in which we define

normal behavior proactively, and we apply learning from failure. The reactive part is

by serendipitous learning from incidences (e.g. Copeland, 2020)[3].

2 Scenario-based Design

The dictionaries define “scenario” as “a sequence of events, especially when imag-

ined”. In the context of system integration, the term refers to events that should be ex-

pected during the system operation. Scenario-based design facilitates the coordination

between the system elements and enables enforcing operation by the rules. The focus

is on generic models intended to optimize the system value. It is essential for enabling

seamless, carefree operation.

2.1 Modeling the System Integration

Model-bases systems integration is critical to enabling agile development, essential for

reducing the development costs. Scenario-based modelling (SBM) is a procedure of

activity design, in which the system activity is expressed in terms of operational sce-

narios. The objective of SBM is to support the design of seamless, robust, coordinated

interaction by the rules.

Barriers to seamless operation include instances of confusion and hesitation of the

operators, due to anxiety about potential loss. Typically, the confusion is attributed to

operator’s errors. Root-cause analysis of operator’s errors indicates that often they re-

sult from uncoordinated activity or from overriding implicit interaction rules. A key

design goal is to enforce operating according to the rules. Scenario-based design facil-

itates rule-based coordination between the system elements.

2.2 Scenario Models

A scenario model is a structure used to describe relationships, such as hierarchy and

transitions, between scenarios. It is the baseline for informal, normative, human-ori-

ented, task-driven interaction design, as well as for disciplined system-oriented activity

8

design. Often, it is a bundle of tree structures of scenarios associated with various sys-

tem components.

The description of a scenario model may be similar to state-charts. Typical top-level

scenarios of the system-level tree structure are generic, primary scenarios, such as: in-

stallation, initial setting, functional operation, initial training, advanced training,

maintenance, testing, and problem solving. Typically, the problem solving scenario

may break down to generic sub scenarios, such as: under hazard, under alarm, trouble-

shooting, safe-mode operation, resetting, recovery, and reporting. Further down, the

“under alarm” scenario may be broken down to sub scenarios such as: low risk, high

risk, and emergency.

Often, the lower levels are mostly domain specific. For example, the functional sce-

nario of a commercial airplane may own three primary sub scenarios: takeoff, naviga-

tion, and landing. Further down the tree, the navigation scenario may own two sub-

scenarios: manual navigation and automatic navigation. The bottom level may com-

prise project specific scenarios. Component-level scenarios may be described by simple

state trees, representing states about availability, reliability, activation, performance

level, etc.

Scenario models may serve as a common vocabulary and a guide to system devel-

opment. They simplify the definition of human-centered normative behavior, as well as

features for enabling robust, carefree interaction. Developing scenario models may in-

volve participation of customer, operator, and user representatives.

2.3 Normative Interaction Models

The goal of normative models is to envision how the system may be operated in normal

scenarios. An interaction model is a presentation of the operation of primary tasks in

terms of the scenario model. The modeling is based on participatory exploration by

users and operators, by soliciting, analyzing, and elaborating stories about optional op-

erational episodes and design alternatives.

The exploration may be employed using light, sketchy, agile simulation of the sys-

tem operation. The simulation may have various forms, such as narratives, animation,

role-play, board games, drama, or computer program. The simulation may employ var-

ious media, such as text, storyboards, video mockups, scripted, emulated, or real pro-

totypes, or virtual reality.

2.4 Model Realization

Coordination failure is often due to scenario ambiguity, in which different system ele-

ments assume different scenarios. For example, the friendly fire accident in Afghani-

stan (2001) is due to inconsistent assumptions about the operational scenario (Zonnen-

shain & Harel, 2013)[27]. Also, in other friendly fire accidents the fire support unit

assumed a wrong phase of the fire plan. In order to enforce inter-element coordination,

9

the design should include declaration and realization of the active scenario, to which

all the relevant system elements should refer.

2.5 Situational Models

A situational model is an expression of the system situation in the various scenarios.

The system situation may be defined in terms of the states of system elements, such as

units, agents, components, variables, procedures, and interaction options. In a situa-

tional model the situations are associated with scenarios. We may refer to these situa-

tions as the situational scope of the scenario.

A simple illustration of a situational model is an elementary system containing a

device that may be On or Off, and a switch with two states, used to control the device.

The functional scenario of the situational model may comprises two sub scenarios of

normal operation:

 Operative: both the device and the switch are On

 Idle: both the device and the switch are Off.

Another example, illustrating the need for situational modelling, is demonstrated by the

accident involved in operating Therac 25 radiotherapy equipment, which was operated

in two normal functional scenarios:

 X-ray testing: obtained by high current, moderated electron beam

 E-beam treatment: obtained by low current, full electron beam

The accident was due to operating in an exceptional situation, of high current, full elec-

tron beam.

Other combinations of the device and switch states are out of the scope of the func-

tional scenario, and are regarded as exceptional. The Torrey Canyon supertanker loss

of control accident (LOCA) demonstrates the need to constrain the operation. A way to

constrain the operation is based on situational models (Weiler & Harel, 2011)[22]. In

this supertanker, the navigation control lever had three positions: manual, automated,

and special position, disconnecting the rudder from the wheel. The special position was

intended for use in maintenance only. The LOCA resulted from accidental selecting the

special position while on board.

Continuous variables may be associated with scenarios by their distribution func-

tions. For example, the available disk space of a computer may be either normal or

critical. Accordingly, the situational model of the computer disk space may own two

scenarios.

Thresholds of any continuous variable, such as container temperature, may define

various performance scenarios, such as normal, low risk, and high risk. The Bhopal

disaster demonstrates the need to impose operation based on situational models of con-

tinuous variables.

Continuous variables may also represent scenarios about external, contextual, or en-

vironmental situations, such as ambient humidity, as well as about time measurements

of repeating activities.

10

2.6 Situational Rules

Situational models enable structuring a framework of operational rules. According the

principles of cybernetics, adopted for the STAMP paradigm, systems should operate

according to rules. Many incidences may be attributed to ambiguous, implicit opera-

tional rule. For example, the rules defining the properness of the operation of the ele-

mentary system are derived from the situational models of the Operative and Idle sce-

narios. If these rules are implicit, then the system might not be detect exceptional situ-

ations, such as when the switch is Off and the device is On.

Situational rules may consist of conditions and reaction. The conditions may be ex-

pressed as boolean expressions of states. The reaction may be preventive, by enforce a

proper operation, or defensive, for example, by rebounding or notifying the operators

about the rule violation. The reaction part may reflect our prediction of the costs of the

reaction options.

Situational rules are attributes of scenarios. Examples of situational rules are:

 In functional computer operation, when the available disk space is critically

low, the system should advice the operator to clean it.

 In the production of dangerous materials, when the container temperature is

higher than a safety threshold, the system should notify the operators and en-

force safe-mode operation.

Examples of generic rules:

 When in a functional scenario, risky features should be disabled. The need for

imposing this rule is demonstrated by the Torrey Canyon and the Afghanistan

friendly fire accident, and many other (Weiler & Harel, 2011)[22].

 During the operation of safety-critical scenarios, safety backup features should

always be available and enabled. The TMI accident (1979) demonstrates the

risks of erroneous disabling of the backup pump (Harel & Zonnenshain,

2019)[11].

Typically, the definition of situational rules is in the scope of systems engineering.

The validation of the situational rules may be based on faking exceptional situations,

and evaluating the system reaction to the faked situations.

2.7 Rule-based Exceptional Handling

A situation is regarded as exceptional if it does not comply with the rules applicable to

the active scenario. The best design strategy to enforce compliance with the rules is by

disabling or avoiding exceptional situations. Method for avoiding exceptions include

rebounding from errors, or providing the operator with a forecast of the effect of op-

tional events.

Exception handling is required when we cannot prevent the exception, in cases when

the exception is due to an external hazard, a hardware fault, a power failure, or a com-

munication interrupt, or a design or implementation mistake. The design should provide

means to accommodate them, by notifying the operators about operating in high-risk

11

situations, by prompting the operators to take actions, and by guiding them in the re-

covery procedure.

2.8 Unexpected Situations

The situational model includes only part of the situations, those included in the situation

scope of the scenarios. Most of the situations are not included in the scope of any of the

scenarios. For example, in the elementary system describe earlier, only two of the four

combinations are expected. Similarly, in the Therac 25 example, only two of the four

combinations of current- electron beam are expected. In hindsight we know that the

Therac 25 accidents are due to operating the system in a mixed mode of high current

and full electron beam, which is not in the situational scope of X-ray testing scenario,

nor of the E-beam treatment scenario. These situation are unexpected, and their root

may be in mistakes in the definition of the situational rules, or in bugs.

The challenge is of handling unexpected situations: the system design should prevent

them, and notify the operators about operating in such situations. Special safe-mode

procedures may be designed to handle them (Harel & Weiss, 2011)[10].

2.9 Activity Models

The system activity may be defined in terms of the system reaction to events. Typically,

the reaction depends on the operational conditions, which are defined by the system

situation and by external conditions. An activity model is a description of the activities

constrained by scenarios. It may be expressed in terms of activity rules.

2.10 Activity Rules

The activity rules define the reaction to events in terms of scenarios. An activity rule

may describe normal interaction, or ways to prevent diversion from normal to excep-

tional situation. Interaction rules define optional responses to an event, in a particular

situation, depending on the scenario. Examples of preventive rules are.

 Safety features should not be disabled while in high-risk scenario.

 Transition to a functional scenario should be avoided when any of the safety

features is disabled.

Typically, the definition of activity rules is in the scope of systems engineering.

2.11 Protective Rules

Protective rules may be derived from situational rules by examination of the possible

transitions from normal situations to exceptional situations.

12

For example, examine the situational rule about the availability of safety features

during safety-critical functional scenarios. Depending on the costs of automated sus-

pension of the functional operation, the system may either suspend the functional op-

eration, or notify the operators about the risks of operating without the safety feature.

Protective rules derived from this situational rule are:

 The system should prevent or warn the operators about disabling the safety

feature while in a functional scenario

 The system should prevent scenario transition from maintenance to functional

when the safety feature is disabled.

The validation of the protection rules may be based on faking exceptional situations or

events.

2.12 Activity Protocols

The activity rules may be formalized in terms of protocols of event-response. The re-

sponses to events may include changing of the operational scenario. The activity model

may include special protocols for handling the operator’s control. For example, a pro-

tocol for responding to disabling a safety feature in a functional scenario may consist

of two steps:

1. Rebounding: prompting the operators to regret or to confirm their intention

2. Switching to a safe scenario, such as maintenance, idle, safe-mode or shutting

down.

2.13 Transition Synchronization

Following a request to change the active scenario, the system needs to activate the sit-

uational rules that apply to the new scenario. By definition, changing a situational rule

of a scenario involves changing of a state of at least one system element. Changing the

state of a system element may be time consuming. The Therac 25 accident demonstrates

a challenge of responding gracefully to synchronization delay, and to suspending the

operation until the scenario transition is complete.

Transient scenarios define the system response to events during the transition. Dur-

ing a transient scenario, the system may operate in a special sync mode. The design

should include special features for enforcing graceful synchronization, such as disa-

bling risky activity, notifying the operators while in synchronization, warning the op-

erators in case of failure, and handling the recovery.

While in a transient scenario, the system may operate in a special transition mode.

The operation in the transition mode may be initially automated, by default. If applica-

ble, the operators may have an option to override the automated behavior.

13

2.14 Transition Models

A transition model is a description of the procedure for changing the situational rules

during the scenario transition. Transition models may describe ways to capture and no-

tify on exceptions, and escape procedures, in response to exceptions.

The transition model may include a special transient scenario, representing the op-

eration until the new scenario is synchronized, and a special escape scenario, represent-

ing the case of transition failure. The operators need to know about such cases, and the

system should provide an exception warning when the situation does not comply with

the new constraints. The transition model may include special features for enforcing

graceful delay or failure, such as disabling risky activity and notifying the operators

while in the transient scenario.

A generic synchronization model may be expressed using a standard protocol, in-

cluding:

 A transition request, pointing at the target scenario, and setting a sync time out

limit

 Activating processes aimed at applying the rules associated with the target

scenario

 Waiting until the situation complies with the rules of the target scenario. While

waiting, the system should indicate that the system is in a transient scenario

 After complying with the rules of the target scenario, it becomes the active

scenario

 In case of reaching the timeout limit, provide a warning message, and initiate

a recovery procedure.

2.15 Recovery Models

A generic recovery model may be expressed using a standard protocol for notifying the

operators about the transition failure, prompting to recover the situation prior to the

transition request, notifying the operators about the recovery results, and entering spe-

cial safe-mode operation session.

3 Discussion

3.1 Engineering

Engineering the scenario-based models may comprise the following topics:

• Customizing. The seven-layer model mentioned earlier (Harel, 2021)[9] is ge-

neric, applicable to various domains and industries. To adapt it to a particular

project these models need customization. The customization process is accord-

ing to the layers; each layer depends on the previous one.

14

• Parameter development. An initial value of the sync timeout may be defined

in the transition specification, but this value might not fit all circumstance. The

design may provide means for measuring the actual transition time, and for ad-

justing the timeout for each of the transitions, based on statistics of the meas-

urements. The adjustment may be automated or manual.

• Adjustability. The setting of the alarm and safety thresholds of the various risk

indicators is a delicate design goal, aiming to balance properly the rate of nui-

sance of the alarms. A special utility may enable informing the system admin-

istrators about the margins of alarms and safe-mode operation.

• Simulation. The transition from the customized model to a prototype and/or

digital twin should be automated. The automation may be based on simulation

of the of the target system, using standard software packages that process the

custom parameters.

• Error-proofing. Primary barriers to maximizing the utility are limitations of

operating in exceptional situations, typically attributed to errors. These barriers

result in hampering the system’s usability. The root cause for many operator’s

errors, such as in using consumer products, is due to erroneous activation of

feature that should be available in different scenarios. For example, a most

prominent problem in operating home appliance is the unintentional activation

of setting features. This failure mode is the source of several famous accidents,

such as the B-17 accidents due to control substitution in WW II, and the Torrey

Canyon supertanker crash in 1967 (Weiler & Harel, 2011)[22].The scenario

model may serve for designing the screens and panels, to prevent erroneous ac-

tivation of features that do not comply with the active scenario.

• Twin-based verification. Digital twin are essential for controlling the system

operation according to the STAMP paradigm: post-deployment emulation ena-

bles detection of incidences by comparing the output of the emulated unit with

that of the real unit MBSE is essential for seamless change validation based on

a digital twins.

3.2 Model Development

Following Harel & Zonnenshain (2019)[11] system integration may be based on mod-

els consisting of rules defining normal situations and activity, which may apply across

various industries and domains. Typical activities in model development include:

 Evaluation. For evaluating the model, we may employ the Layer Of Protec-

tion Analysis (LOPA) technique, commonly used in the process industry for

assessing the protection needs. The evaluation is based on testing the effects

of protection layers and calculating the potential risks. Trackers should be de-

veloped and integrated in systems, to enable evaluating the effectiveness of

this methodology.

15

 Learning. Harel (1999)[5] has demonstrated the potential benefits of tools for

tracking and analysis of the system activity. Utility-oriented engineering may

incorporate means, including sensors, trackers, recorders, and analyzers, for

informing the operators and the developers about the time wasted in inci-

dences.

 Agile development. The models should be defined iteratively, each cycle is

followed by evaluation. Typically, the evaluation ends up with a list of re-

quirements for design changes, intended to reduce the operational complexity.

The development might end when it is obvious that all known significant risks

are removed. Criteria form ending the development may be based on the Ser-

vice Integrity Level (SIL) evaluation method commonly applied in the process

industry.

 Testability-oriented design. Testing rare events is challenging. To enable

testing exceptions the system should incorporate a special tester unit that fakes

various kinds of faults, in various conditions, that the testing team can custom-

ize. A special scenario should be defined, which is part of the operational con-

ditions. Utility-critical systems should incorporate means, including sensors

and data analytics, for informing the operators and the developers about the

time they could save.

3.3 Conclusions

A challenge for the 4th industrial revolution is to develop a methodology for cross-

industry model-based integration. This study demonstrates that we can define universal

rules, suggesting that this goal may be reached: principles of integration may be phrased

as scenario-based rules, which may be transformed to protocols for risk detection,

recognition, and identification. The article explores various protection patterns, but cer-

tainly not for all possible design challenges. It may be interesting to explore operational

rules for various tasks in various domains. Validation of the models proposed here may

be conducted by analysis of the system performance, obtained by activity trackers, us-

ing statistical metrics, followed by traditional usability testing in the corresponding sce-

narios.

16

References

1. Bainbridge, L 1983, Ironies of automation. Automatica. 19 (6): 775–779. doi:10.1016/0005-

1098(83)90046-8. ISSN 0005-1098

2. Baker, CC & Seah, AK 2004, Maritime Accidents and Human Performance: the Statistical

Trail Paper presented at MARTECH 2004, Singapore, September 22-24,

3. Copeland, S 2020, On serendipity in science: discovery at the intersection of chance and

wisdom, Synthese: an international journal for epistemology, methodology and philosophy

of science

4. Dekker, S 2007, Just culture: Balancing safety and accountability, Ashgate.

5. Harel, A 1999, Automatic Operation Logging and Usability Validation, Proceedings of HCI

International '99, Munich, Germany, Vol. 1, pp. 1128-1133

6. Harel, A 2010, Whose Error is This? Standards for Preventing Use Errors, The 16th Confer-

ence of Industrial and Management Engineering, Tel-Aviv

7. Harel, A 2011, Comments on IEC 60601-1-8. Letter submitted to IEC/TC 62 working group

8. Harel, A 2020, System Thinking Begins with Human Factors: Challenges for the 4th Indus-

trial Revolution. in R.S. Kenett, R.S. Swarz and A. Zonnenshain (Eds), Systems Engineering

in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems

Engineering, Wiley

9. Harel, A 2021, Towards model-based HSI engineering: a universal HSI model for utility

optimization. Accepted to the HSI conference, San Diego.

10. Harel, A & Weiss, M 2011 Mitigating the Risks of Unexpected Events by Systems Engineer-

ing, The Sixth Conference of INCOSE-IL, Hertzelia, Israel.

11. Harel, A & Zonnenshain, A 2019, Engineering the HSI. The first HSI conference, Biarritz,

France

12. Hollnagel, E 1983, Human Error. Position Paper for NATO Conference on Human Error.

Bellagio, Italy.

13. Hollnagel, E 2006, Resilience: The challenge of the unstable. In: Hollnagel, E., Woods, D.

D. & Leveson, N. C. (Eds.), Resilience engineering: Concepts and precepts (p. 9-18). Alder-

shot, UK: Ashgate.

14. Kariuki, SG & Loewe, K 2006 Increasing Human Reliability in the Chemical Process Indus-

try Using Human Factors Techniques, Process Safety and Environmental Protection

84(3):200-207

15. Landauer TK 1995, The Trouble with Computers, Usefulness, Usability, and Productivity.

MIT Press

16. Norman, DA 1983, Design Rules Based on Analyses of Human Error. Communications of

the ACM 26(4):254-258

17. PlaneCrashInfo, 2014, Causes of Fatal Accidents by Decade http://planecrash-

info.com/cause.htm

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0005-1098%2883%2990046-8
https://doi.org/10.1016%2F0005-1098%2883%2990046-8
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0005-1098
https://research.tudelft.nl/en/publications/on-serendipity-in-science-discovery-at-the-intersection-of-chance
https://research.tudelft.nl/en/publications/on-serendipity-in-science-discovery-at-the-intersection-of-chance
http://planecrashinfo.com/cause.htm
http://planecrashinfo.com/cause.htm

17

18. Shneiderman, B 1980, Software Psychology: Human Factors in Computer and Information

Systems. Little, Brown

19. Singh, S 2015, NHTSA CrashStat, Critical Reasons for Crashes Investigated in the National

Motor Vehicle Crash Causation Survey, DOT HS 812 115

20. Swatton, PJ 2011, "14.11", Principles of Flight for Pilots, Chichester, UK: Wiley & Sons Ltd

21. Taleb, NN 2007, The Black Swan: The Impact of the Highly Improbable. Random House

Trade Paperbacks.

22. Weiler, M & Harel, A, 2011, Managing the Risks of Use Errors: The ITS Warning Systems

Case Study

23. Weinberg, GM 1971, The Psychology of Computer Programming. Van Nostrand Reinhold.

24. Wickens, CD 1992, Engineering psychology and human performance (2nd ed.). Harper Col-

lins Publishers.

25. Wiener, N 1948, Cybernetics; or, Control and communication in the animal and the machine.

Technology Press, Cambridge.

26. Zonnenshain, A & Harel, A 2009, Task-oriented System Engineering, INCOSE Annual In-

ternational Symposium, Singapore

27. Zonnenshain, A & Harel, A 2013, Resilience-oriented design. The annual INCOSE-IL con-

ference, Hertzelia,

28. Zonnenshain, A & Harel, A 2015, A practical guide to assuring the system resilience to op-

erational errors, INCOSE Annual International Symposium, Seattle

