

Abstract— Most accidents are commonly attributed in hindsight

to human errors, yet most methodologies for safety focus on technical

issues. According to the Black Swan theory, this paradox is due to

insufficient data about the ways systems fail. The article presents a

study of the sources of errors, and proposes a methodology for utility-

oriented design, comprising methods for coping with each of the

sources identified. Accident analysis indicates that errors typically

result from difficulties of operating in exceptional conditions.

Therefore, following STAMP, the focus should be on preventing

exceptions. Exception analysis indicates that typically they involve

improper account of the operational scenario, due to deficiencies in the

system integration. The methodology proposes a model, which is a

formal definition of the system operation, as well as principles and

guidelines for safety-oriented system integration. The article calls to

develop and integrate tools for recording and analysis of the system

activity during the operation, required to implement and validate the

model.

Keywords— accidents, complexity, errors, exceptions, interaction,

modeling, resilience, risks

I. HUMAN ERRORS

Studies about the sources of accidents indicate that most of

them are typically attributed to human errors, or improper

usage. The factors mentioned by the reviewer are in the

category of human errors. Human errors explain most accidents

in the air (60%, PlaneCrashInfo 2014)[38] sea (80%, Baker &

Seah 2004)[2], driving (90%, Singh 2015)[44], and in the

industry (60-80%, Kariuki & Löwe 2006)[33].

Errors are incidental. Weinberg (1971)[50] reported on

typical subconscious design mistakes, due to egocentric

programming, hampering the productivity of the computer

users. Shneiderman (1980)[42] promoted the concept of

empathic programming suggested by Weinberg, and proposed

few principles for avoiding such design mistakes. Norman

(1983)[36] classified activity errors due to omission, or to

taking the wrong action. A wrong action may be either a slip or

a mistake. A mistake may be in situation perception or in

deciding which action to take. However, following Bainbridge

observation about ironies of automation (1983)[1], Weiler &

Harel (2011)[49] argue that judgment errors under stress are

due to relying on irrelevant prior experience.

The meaning of the term "human error" or “improper usage”

is ambiguous. Accident analyses indicate the most of these

instances involve several factors, most notable are component

malfunctions. Often, the error is attributed in hindsight to the

person who happened to be nearby, typically, the operator who

A. Harel is with Ergolight, Haifa 3433506. Israel (ergolight@gmail.com).

was on duty (Dekker, 2007)[11]. Most accidents may be

attributed to human limitations to perform perfectly in extreme

conditions, such as exceptional situations due to design

mistakes and bugs.

Following Hollnagel (1983)[28] the model presented here

assumes that the term “error” is an engineering bias, diverting

the accountability for design mistakes, resulting in failure to

assist in the collaboration with the operators. Harel, (2010)[20]

suggested that “in attributing the incident to the trigger, instead

of the situation, the system stakeholders typically become

sloppy and careless about the design features that could have

prevented the incident”, as demonstrated in the following

figure:

Fig. 1 Attributes of errors

According to Zonnenshain & Harel (2015)[56] the term

refers to activities of the responsible organization intended to

divert the focus of investigations from the management to the

operators. For example, Harel (2011)[21] analyzed various

ways in which vendors of equipment for medical alarms infect

the standards by diverting the accountability for failure to the

operators. The implication of this observation is that rather then

investing on error analysis, the design should focus on

preventing failure.

Barriers to seamless operation include instances of confusion

and hesitation of the operators, due to anxiety about potential

loss. Often, the confusion is attributed in hindsight to operator’s

errors. Typically, we expect the operators to be rational.

However, as prior studies demonstrated the meaning of the term

rationality is vague (Harel, 2020)[22]. Rationality relies on the

information that the operators perceive. However, the

information that they receive is not stable and not objective. It

.

Avi Harel

Ergolight, Haifa, Israel

ergolight@gmail.com

Towards Safety-oriented System Design: Preventing

Operator Errors by Scenario-based Models

is subjective and dynamic.

A. Human performance

A common measure of the system value is in terms of

performance. Typically, the meaning of this term depends on

the purpose and functions of the system. Ideally, it is associated

with metrics such as throughput, bandwidth, power

consumption, etc. However, the perceived performance is

typically industry and domain specific. In practice, it depends

also on implicit factors, which are not tangible or testable.

Often, the implicit factors are more significant than the

measureable and testable factors. Typically, the term refers to

the perceived efficiency, namely, how well the system

performs.

The system view of performance is based on the wrong

assumption that the operators may do their job perfectly. The

human factors view of performance focuses on bottleneck due

to the limitations of the human operators, such as attention

deficit, stress, when the attention demands are high, such as in

uncertainty, or in multi-tasking (e.g. Wickens, 1992)[52].

B. Limited attention capacity

The human attention capacity is limited. When under stress

the operators are liable to err, even when they pay their full

attention to the operation (Clark and Dukas, 2003)[8]. For

example, under stress, the operators may focus on solving a

problem suggested by a particular alarm, and miss indications

about other critical problems.

C. Situation awareness

This concept is about the operator’s failure to perceive the

system and environmental elements as expected, or to

comprehend the significance of the situation perception.

Situation awareness is critical for successful decision-making

across a broad range of systems (Endsley, 1995)[13]. For

example, Harel (2006)[18] explained that operational reliability

and quality are critical for enforcing proper reaction to the

alarms.

D. Operating in exceptional situations

A key hurdle to maximizing the system utility is the

difficulties that the operators experience when the system is in

exceptional situations (Zonnenshain & Harel, 2015)[56]. The

reason for this is that regular training targets normal conditions.

During normal operation, the operators encounter exceptional

situations only occasionally, which is not sufficient for effective

learning. Whenever they encounter an exceptional situation,

they waste too much time trying to find their way around it. For

example, informal studies on the productivity in text editing

indicate that about half of the time is wasted in recovery from

errors.

The means to avoid exceptional situations and to support

exception management may be integrated into the model used

in the system design.

E. Accountability

The article advocates the HF version of Murphy’s Law: if the

design enables the operators to fail, eventually they will. In

particular, improper usage such as failure to handle situations

with which the operators are not familiar, should be attributed

to design mistakes. Therefore, the article advocates a design

goal of protecting the system from human errors. According to

the proactive version of Murphy’s Law, it is the design’s

responsibility to prevent situations in which the operators might

fail (Harel, 2011)[21].

F. Operational reliability

Operational reliability is the system's capability to minimize

the costs of operating in exceptional conditions. Operational

reliability may be defined as “The ability of an apparatus,

machine, or system to consistently perform its intended or

required function or mission, on demand and without

degradation or failure” (Berard, 2013)[5].

G. The design challenge

The article assumes the proactive version of Murphy’s Law,

attributing operational problems to design defects, of enabling

the operational problems. The article assumes a variant of

Taleb’s Black Swan theory (2007)[47], illustrated in the

following figure:

Fig. 2 Operator’s errors are due to design mistakes

The figure illustrates that failure attributed to the operators

should rather be attributed to design mistakes. Most design

mistakes are latent, waiting for the opportunity to emerge. Only

those with costly results are observed, and consequently

attributed to operator’s errors.

II. DESIGN CHALLENGES

A. Usability

Believing that it is the designer’s responsibility to reduce the

costs of operation, Norman and Draper (1986)[37] explained

that to avoid the loss, the system design should be user-

centered. Shneiderman (1986)[43] proposed eight golden rules

for user interface design, based on Human-Centered Design

(UCD) principles of usability assurance. The quality of the

system usability affects the operator’s productivity, system

safety, and the experience of using consumer products.

B. System Integration

Prior studies indicate that HCD may prevent some of the

errors, but not those due to flaws in the system integration.

Indeed, many accidents are due to the operator’s inability to

detect, recognize, or identify situations in which not all units

assume the same operational conditions. Examples of such

accidents are the Therac 25, Torrey Canyon, TMI, Bhopal, and

may friendly fire accidents. In hindsight, investigators attribute

the coordination problem to operator’s errors, assuming that the

operators could have manage the exceptional situation. In

reality, as Bainbridge (1983)[1] observed, operators are likely

to fail in the task of coping with rare situations. Therefore, a key

design challenge is to ensure coordination by design.

C. Human-System Integration

In many accidents, the coordination problem was between

the operator and the technical system. The UCD view of these

incidents is of the operator’s situation awareness, attributing the

failure to the human operators. Human-System Integration

(HSI) is a special sub discipline of system integration,

attributing coordination failure to the system design, rather than

the operators. Accordingly, HSI engineering descends from

systems engineering.

D. Operational complexity

A primary hurdle to operational reliability is operational

complexity. Operational complexity is about possible

confusion, and it applies also to very simple systems. Two

common error modes attributed to operational complexity are

physical confusion, such as control confusion, and logical

confusion, such as mode confusion.

Control confusion is an instance of applying a wrong control

due to similarity or proximity, as illustrated in the following

figure:

Fig. 3 Confusion delay timers

This type of complxity applies to many consumer systems,

such as home appliances: Laundry, drier, air conditioner,

furnace, and oven. It also applied the many B-17 accidents in

WW II. Control confusion may be resolved within the

discipline of HCD. Often, control confusion may be resolved

by redundancy analysis, according to the principle of Occam’s

Razor.

Mode confusion is an instance of activating a control in the

wrong mode, resulting in an unintentional effect. Examples of

critical mode confusion are of activating setup or maintenance

features during functional operation.

The number of situations grows exponentially with the

number of states. Most of them are exceptional. Following

Weaver (1948)[48] complexity may be defined as the degree of

difficulty in predicting the properties of a system if the

properties of the system's parts are given. Sheard and

Mostashari (2009)[40] categorized complexity as either

structural, dynamic, or socio-political.

Many incidences of operational difficulties are due to

inconsistent system response to the operator’s commands.

Accordingly, we may define operational complexity in terms of

the amount and variety of condition-dependent activities.

Operational complexity may be defined in terms of conditional

activity, such as the conditions for human-machine interaction

or inter-unit coordination, namely, the consistency of the

reaction to events. If the design enables various reactions to a

specific event, depending on the operational scenario, then this

event is error-prone, contributing to the complexity. Reducing

the operational complexity is critical for maximizing the HSI

utility.

The article proposes to prevent unintentional mode setting by

impeding the transition, as illustrated in the following figure:

Fig. 4 Preventing slips

The article proposes to resolve this kind of problems by

scenario-based design and testing.

E. The performance envelope

Hollnagel (2006)[29] suggested that system failure is often

associated with operating in extreme conditions. The limits of

performance may be defined by the performance envelope. The

performance envelope is an extension of the concept of flight

protection envelope. For example, the speed of an airplane is

limited by the stall threat and the Mach number, and the altitude

is limited by the Coffin Corner (Swatton, 2011)[46]. These

conditions should be considered setting the performance goal.

The performance envelope may be optimized by design

supporting seamless operation.

F. Operational constraints

According to the principles of cybernetics, to avoid failure,

the system should control its behavior, similarly to animals

(Wiener, 1948)[53]. This principle is key to endorsing HSI

reliability. HSI reliability relies on operating according to rules.

In 1972 Alain Colmerauer and Philippe Roussel developed

Prolog, a rule-based computer language (Cohen, 2001)[9].

Shapiro (1983)[39] studies the using Prolog for algorithmic

program debugging. Leveson (2004)[34] adopted the principles

of cybernetics and proposed the STAMP paradigm, applying

the principle of self-control in a hierarchy of system views. The

Prolog language demonstrates the feasibility of the STAMP

paradigm. Operational constraints are operational rules

constraining the system operational (Harel & Zonneshain,

2019)[25]. Typically, these constraints are scenario-dependent.

G. Operational exceptions

An exception is a situation intruding the performance

envelope. HSI exception extends the concept of software

exceptions, introduced in LISP (Gabriel & Steele, 2008)[15].

The extension is in the structures of static, dynamic, or

behavioral exceptions. The original software exception has two

components: a probe in the program, and an exception handler.

The probe is actuated when the program reaches this probe. In

contrast, operational exceptions reside in the system situations

and events. The exceptional situations are handled by scanning

the situational constraints, and the exceptional events are

handled at the event handling. Applying system thinking

(Leveson, 2004)[34], HSI focusses on rare situations, and the

HSI models focus on operational rules (Harel & Zonnenshain,

2019)[25].

H. Operational hazard control

A hazard is a potential source of loss. Hazard control is used

in industry to mitigate the risks of hazards. Operational hazard

control is a method of hazard control focusing on HSI. It is

inspired by methods of Statistical Process Control (SPC,

Wheeler & Chambers, 1992)[51] and of Statistical Quality

Control (SQC, Shewhart, 1931)[41]. Operational hazard

control eliminates the risks of exceptional events and of

operating in exceptional situations.

I. Operational resilience

According to the INCOSE Resilient Systems Working Group

(RSWG), resilience is the ability to maintain capability in the

face of adversity. Jackson and Ferris (2013)[31] presented

principles for assessing and improving the resilience of

engineered systems across their life cycle. Operational

resilience is about HSI factors in resilience assurance

(Zonnenshain & Harel, 2015)[56].

For example, we may explore various collaboration options

in a minimal system, consisting of a simple engine with two

states: On and Off, operated by a switch with states: On and

Off. The functional option is complicated when the operator is

required to support early detection and identification of

malfunction. How will the operators know about instances of

malfunction? How will they know if the problem is with the

engine or with the switch? How will they identify problems in

the connections? How will they know when the engine starts

too slowly?

An error-proof design may include sensors of the engine and

switch states, and an indication when the state are not

compatible with each other. In addition, the design may include

indication of these states, to facilitate the troubleshooting. The

sensors may also be used to notify on problems of starting or

stopping the engine too fast or too slowly. The following figure

illustrates the inter-state transitions as system variables.

Fig. 5 Inter-unit state transitions

The system may record the transition delays and generate

distribution functions for these delays. The system design may

make use of the distribution parameters, and include

identification of extreme values, as well as extra means for

alarming and emergency shut-down. The following figure

illustrates how the design may define exceptional delays, and

how the system may respond to exceptions:

Fig. 6 Discretizing the system variables

In the example, the threshold of sigma may be used for

alarming, and the threshold of two sigma may be used for safe-

mode operation, such as emergency shut down.

III. MODELING

Scientific findings are documented in models, obtained in

frameworks of meta-models of information behavior (Wilson,

1999)[54]. For example, Following Fuhs (2008)[14]

description of hybrid vehicles, Boy (2012)[6] suggested

modeling the system operation in the form of orchestrating

human-centered design.

Models enable participation by diverse SMEs. Model-based

engineering enables agile development of complicated systems.

For example, Harel (1999)[17] demonstrated a model-based

approach to usability testing, by capturing and analysis of

instances of difficulties in using Windows applications. Also,

Harel et al. (2008)[24] demonstrated a model-based method for

automated analysis of website navigation based on usage

statistics. Through simulation, models provide a gradual,

seamless, reliable, modular transition from requirements to the

implementation of digital twins and the final system.

A. Model-based system integration (MBSI)

The methodology of model-based engineering is inspired by

https://www.sebokwiki.org/wiki/Life_Cycle_(glossary)

a similar methodology of rapid prototyping, developed in the

framework of software engineering in the 70s (Grimm,

1998)[16].

MBSI is the modern systems engineering version of software

prototyping, a concept explored in the 80s Model-based system

integration (MBSI) enables early integration by simulation,

resulting in shortening the integration phase and reducing the

development costs. (Luqi, 1989)[35]. MBSI may consist of

project-specific, functional features, as well as universal

features applicable to maintenance, resilience, training, etc. The

universal features may apply to various domains and industries.

B. The operator’s view

Jacobson (1987)[32] described a technique used at Ericson to

capture and specify system requirements based on use cases.

Today this technique is part of the Universal Meta Language

(UML), commonly used in software design. The concept of use

cases was migrated to systems engineering, in the framework

of SysML. They are key to describing the designer’s view of

the system behavior, required to support Model-based Systems

Engineering (MBSE). The operator’s view of the use cases is

called usage scenarios (Spool, 2014)[45]. HSI Meta Language

(HSIML) is a meta-language used for the HSI design.

C. Model-based HSI

Failure is often attributed to latent defects, wear-out,

unexpected environmental conditions, and improper usage

(both accidental and malicious). Many developers are not aware

of the risks of operating in exceptional situations. Therefore,

they do not gain the education and resources required to

mitigate these risks.

Hollnagel (2006)[29] proposed two ways for modeling the

system operation. The proactive approach is about how to

describe normal behavior, and the reactive approach is about

how to describe extreme events. HSI modeling focuses on

universal methodologies of rule-based design, for the sake of

reducing the operational complexity. According to the

proactive approach to failure, the system design should support

the operation also in extreme conditions. HSI modeling is a

hybrid approach, in which we define normal behavior

proactively, and we apply learning from failure. The orchestra

illustration is proactive-oriented. The reactive part is by

serendipitous learning from incidences (e.g. Copeland,

2020)[10].

Model-based HSI (MBHSI) is part of model-based

engineering, focusing on the integration between the system

and its operators. Model-based design enables seamless

adaptation to design changes. Rule-based models enforce

mitigating the risk of operational complexity. Model-based HSI

facilitates the implementation of the HSI part of the digital twin

(Barricelli et al., 2019)[3].

D. Learning from incidences

The method applied in this study is actually a variant of the

SSM methodology, which is critical system thinking, in

generating patterns of system resilience (Checkland, 2001)[7],

which is in the domain of Concept-Knowledge (C-K) theory

employed in the design of social systems (Hatchuel et al.,

2011)[27]. The goal is to identify patterns of failure, and to

assign method employed in various industries. The

methodology for pattern generation is based on abstraction of

the system elements and activity, and matching abstracted

elements of various incidences. This is illustrated in the

following figure:

Fig. 7 Elements of modeling the system operation

Incidence modeling may be based on four types of evidence:

anecdotal, statistical, causal, and expert evidence (Hornikx,

2018)[30]. By its nature, anecdotal evidence is subject to

systematic deviation from the norm and/or rationality in

judgment (Haselton et al. 2005)[26]. Expert investigation is

also biased: Drury et al. (2002)[12] found that during the

investigation stage the number of facts considered grows, but

then decreases at the reporting stage. They conclude that the

incident reports may not consider all causal factors. In HSI

reliability studies, these biases need special attention.

Modeling may be based on the gradual abstraction of

incidences and solutions. An incidence is an instance of

crossing the limits of the performance envelope. The reactive

part in HSI modeling is by cross-domain learning from

incidences.

We may distinguish between two types of incidences: those

due to rare events and those due to daily, low-cost events. Taleb

(2007)[47] argued that it is impossible to predict incidences due

to Black Swans (rare events) because a-priori we do not have

the data required for the prediction.

The first stage in the methodology generation is to create a

bank of generic failure modes, based on failure analysis. The

following figure illustrates a way to document failure analysis

when applied to the TMI accident:

Fig. 8 Event flow in accident investigation

The second stage is abstraction. We accumulated evidence

from other systems with similar problems. For example, there

are several types of appliances that share the same redundant

Delay feature

The methodology was developed gradually. An initial set of

11 patterns was proposed in 2008 in a working group on risk

management of the Israeli chapter of INCOSE. After going

through a bunch of failure modes, proposed by the workshop

participants, we may come up with a simple model of system

failure such as the one depicted in the following figure:

Fig. 9 Basic situation classification

Then we established a dedicated working group on system

resilience, in which we examined various possibility of failure

modes found in 67 incidences. The outcome of this examination

was a comprehensive model of system resilience. The model

was reported in 2015 INCOSE conference (Zonnenshain &

Harel, 2015)[56]. An updated version of this model is

demonstrated in the following figure.

Fig. 10 A model of exception management

Based on this model, we examined a pattern of failure modes

of activating a maintenance-only feature in functional

operation, as described above. We looked at common methods

for protecting from incidences employed in the industry and we

came up with two approaches: a. disabling the activation of

maintenance-only features during functional operation, and b.

warning about such instances. This defines two patterns of

preventing such mishaps, defined as operational rules. BTW,

these rules apply also to simple systems, such as home

appliances.

The next stage is inter-disciplinary task allocation. It is the

responsibility of the systems engineer, and/or the safety

engineer, to select the proper patterns, and it is the

responsibility of the HCD practitioner to design the warning

messages, the rebound feedback, and the notifications to the

operators.

Finally, we had a validation test of the patterns. Matched the

patterns with each of the incidences in our sample, and we

obtained a pie chart representing the power of the test, as

follows:

Fig. 11 Distribution of the effects of the 2015 model

For 96% of the incidences we matched at least one pattern

from our collection. This was in 2015. Today our models are

much more elaborated.

Theoretically, we need to quantify the value of this model,

and to prove that the added-value of applying it is significant.

Ideally, we may want to compare projects that employed this

model with project that did not employ it yet. At this stage of

the theory development this is impossible, because we cannot

get the data that should be used for a comparative study, simply

because there is no project yet that tried using the method. Even

if we had such project, this method should be of low validity,

because projects do not disclose their values.

A way to work around this limitation is by scoring made by

intuition-based evaluation of experts in HSI design. Today,

there are no experts yet that may evaluate the method, because

it has not been published yet. The practice about this kind of

preliminary situation is to get a consensus, similarly to that of

the UML/SysML.

Most systems engineering conventions and practices are

adopted by consensus, based on intuition, commonly called

“common sense”, not supported by research, for simple reason:

it is impractical to design experiments on system development,

in which the scoring is the real value, such that the conclusions

will be of high face validity. It is impossible to apply proper

experimental design to such paradigms.

This is the kind of support that we may expect when

presenting new theories to practitioners. This discussion applies

also to the other goal of the study, namely, demonstrating the

feasibility of learning from rare events. A first step towards

enabling learning from human errors and unexpected events,

should be to develop tools for tracing and exploring the system

activity.

The prototype of a universal HSI model was in two stages:

first, defining the GMMs, and then organizing them in a

structure.

E. Sampling

A preliminary version of the GMMs was developed earlier

by Zonnenshain & Harel (2015)[56]. These GMMs were

defined by analysis of 67 incidences, as patterns of typical

system activity involved in the incidence. The present study

repeated the analysis of these incidences, based on knowledge

gained by analysis of additional case studies.

The study was based on 67 case studies reported elsewhere.

The case studies are of three categories. Most of them are well-

documented accidents. Others are anecdotal incidences due to

minor flaws, reported by members of working groups on

resilience assurance. Few case studies are of recurring, low-cost

incidences.

An example of a case study is of the Three Miles Island

accident, presenting two modes of failure of safety features:

 The backup pump was disabled during power generation

 PORV did not close after pressure release, backup

pressure release was not provided.

F. A universal model of operation

Recently, Harel (2021)[23] has proposed a universal model

of error-free system integration, consisting of seven layers of

generic mini models (GMMs). The structure definition was

based on analysis of the relationships between various entities

that define the system behavior: functions, units, risks, states,

events, reaction, and resilience. A prototype of a universal HSI

model presented here consists of seven layers of GMMs as

illustrated in the following figure:

Fig. 12 Discretizing the system variables

The universal HSI model highlights the role of situational

exceptions, as well as the role of scenarios, which should reduce

operational complexity by information hiding, in support of

direct mapping from intention to action.

A structural layer. This layer includes a break down of the

system elements, including human agents (users, operators,

artificial agents (processes, tools …) and sub systems. The

system is a socio-technical, in which the operators are part of

the system, but the users are external. The subsystems are

coupled strongly with the operators, and loosely with the users.

A functional layer. This layer includes descriptions of the

operational context and features of required to accomplishing

an operator’s task, intended to maximize the system utility.

A situational layer. This layer is contains representation of

the operational situations. The design goal is to notify the

operators about the system operating in exceptional situations.

The core of the static model is an abstraction of the system

situations, with a focus on exceptional situations.

An activity layer. This layer includes representations of the

system dynamics. The design goal is to alert the operators about

transitions from normal to exceptional situations. The core of

the dynamic model is an abstraction of the system events, with

a focus on unexpected events.

A behavioral layer. This layer includes definitions of the

responses to events in various conditions. The design goal is to

mitigate the risks of wrong responses to events. The core of the

behavioral layer is an abstraction of typical system responses to

exceptional events, with a focus on risk reduction. The focus is

on assisting the operators in responding to rebound messages,

in perceiving properly the risks associated with the alarms, and

in troubleshooting.
A resilience layer. This layer includes representations of

safety backups. The design goal is to mitigate the risks of

operating with backup features missing or unavailable. The core

of the resilience model is an abstraction of secondary risks due

to the failure of safety features.

G. Model development

The GMMs may be developed gradually as incidences of

new domains are added to the sample. Each cycle including the

following activities:

 Behavior abstraction. This activity is the outcome of the

incidence analysis. The goal of behavior abstraction is to

transform domain-specific terms into universal, cross-

domain terms. The abstract version of a specific incidence

is an incidence model.

 Model matching. The objective of model matching is to

identify common failure modes, namely, patterns of

activities leading to incidences.

 Protection evaluation. The goal of protection evaluation

is to detect and evaluate design features that may enhance

reliability, namely, that may cope with the failure mode.

Typically, this activity is serendipitous.

IV. SCENARIO-BASED DESIGN

Root-cause analysis of operator’s errors indicates that often

they result from uncoordinated activity. Root-cause analysis of

coordination failure indicates that often they are due to

overriding interaction rules. Often, the reason for this is that the

rules are not stated explicitly in the requirements documents.

A key design goal is to enforce operating according to the

rules. Scenario-based design facilitates the coordination

between the system elements and enables enforcing operation

by the rules.

A. HSI scenarios

HSI scenarios are the HSI view of use cases/ usage scenarios.

They are used for both design and testing. Operational

complexity may be reduced by assigning the activity to

scenarios.

Scenario-based design is essential to enabling seamless,

carefree operation. Scenario-based modelling (SBM) is a

procedure of activity design, in which the system activity is

expressed in terms of operational scenarios. The objective of

SBM is to support the design of seamless, robust, coordinated

interaction by the rules. Trackers should be developed and

integrated in systems, to enable evaluation of the effectiveness

of this methodology.

B. Scenario models

A scenario model is a structure used to describe relationships,

such as hierarchy and transitions between scenarios. It is the

baseline for informal, normative, human-oriented, task-driven

interaction design, as well as for disciplined system-oriented

activity design. Often, it is a bundle of tree structures of

scenarios associated with various system components.

The description may be similar to state-charts. Typical top-

level scenarios of the system-level tree structure are generic,

primary scenarios, such as: installation, initial setting,

functional operation, initial training, advanced training,

maintenance, testing, and problem solving. Typically, the

problem solving scenario may break down to generic sub

scenarios, such as: under hazard, under alarm, troubleshooting,

safe-mode operation, resetting, recovery, and reporting. Further

down, the “under alarm” scenario may be broken down to sub

scenarios such as: low risk, high risk, and emergency.

Often, the lower levels are mostly domain specific. For

example, the functional scenario of a commercial airplane may

own three primary sub scenarios: takeoff, navigation, and

landing. Further down the tree, the navigation scenario may

own two sub-scenarios: manual navigation and automatic

navigation. The bottom level may comprise project specific

scenarios.

Component-level scenarios may be described by simple state

trees, representing states about availability, reliability,

activation, performance level, etc.

Scenario models may serve as a common vocabulary and a

guide to system development. They simplify the definition of

human-centered normative behavior, as well as features for

enabling robust, carefree interaction.

The definition of scenario models may involve participation

of customer, operator, and user representatives.

C. Normative interaction models

The goal of normative models is to envision how the system

may be operated in normal scenarios. An interaction model is a

presentation of the operation of primary tasks in terms of the

scenario model. The modeling is based on participatory

exploration by users and operators, by soliciting, analyzing, and

elaborating stories about optional operational episodes and

design alternatives.

The exploration may be employed using light, sketchy, agile

simulation of the system operation. The simulation may have

various forms, such as narratives, animation, role-play, board

games, drama, or computer program. The simulation may

employ various media, such as text, storyboards, video

mockups, scripted, emulated, or real prototypes, or virtual

reality.

D. Application to UI design

The root cause for many operator’s errors, such as in using

consumer products, is due to erroneous activation of feature that

should be available in different scenarios. For example, a most

prominent problem in operating home appliance is the

unintentional activation of setting features. This failure mode is

the source of several famous accidents, such as the B-17

accidents due to control substitution in WW II, and the Torrey

Canyon supertanker crash in 1967.

The scenario model may serve for designing the screens and

panels, to prevent erroneous activation of features that do not

comply with the active scenario.

E. Model realization

Coordination failure is often due to scenario ambiguity, in

which different system elements assume different scenarios.

For example, the friendly fire accident in Afghanistan (2001) is

due to inconsistent assumptions about the operational scenario.

Also, in other friendly fire accidents the fire support unit

assumed a wrong phase of the fire plan. In order to enforce

inter-element coordination, the design should include

declaration and realization of the active scenario, to which all

the relevant system elements should refer.

F. Situational models

A situational model is an expression of the system situation

in the various scenarios. The system situation may be defined

in terms of the states of system elements, such as units, agents,

components, variables, procedures, and interaction options. In

a situational model these are associated with scenarios. We may

refer to these situations as the situational scope of the scenario.

A simple illustration of a situational model is an elementary

system containing a device that may be On or Off, and a switch

with two states, used to control the device. The functional

scenario of the situational model may comprises two sub

scenarios of normal operation:

 Operative: both the device and the switch are On

 Idle: both the device and the switch are Off.

Another example, illustrating the need for situational

modelling, is demonstrated by the accident involved in

operating Therac 25 radiotherapy equipment, which was

operated in two normal functional scenarios:

 X-ray testing: obtained by high current, moderated

electron beam

 E-beam treatment: obtained by low current, full

electron beam

The accident was due to operating in an exceptional situation,

of high current, full electron beam.

Other combinations of the device and switch states are out of

the scope of the functional scenario, and are regarded as

exceptional. The Torrey Canyon supertanker loss of control

accident (LOCA) demonstrates the need to impose operation

based on situational models. In this supertanker, the navigation

control lever had three positions: manual, automated, and

special position, disconnecting the rudder from the wheel. The

special position was intended for use in maintenance only. The

LOCA resulted from accidental selecting the special position

while on board.

Continuous variables may be associated with scenarios by

their distribution functions. For example, the available disk

space of a computer may be either normal or critical.

Accordingly, the situational model of the computer disk space

may own two scenarios.

Thresholds of any continuous variable, such as container

temperature, may define various performance scenarios, such

as normal, low risk, and high risk. The Bhopal disaster

demonstrates the need to impose operation based on situational

models of continuous variables.

Continuous variables may also represent scenarios about

external, contextual, or environmental situations, such as

ambient humidity, as well as about time measurements of

repeating activities.

G. Situational rules

Situational models enable structuring a framework of

operational rules. According the principles of cybernetics,

adopted for the STAMP paradigm, systems should operate

according to rules. Many incidences may be attributed to

ambiguous, implicit operational rule. For example, the rules

defining the properness of the operation of the elementary

system are derived from the situational models of the Operative

and Idle scenarios. If these rules are implicit, then the system

might not be detect exceptional situations, such as when the

switch is Off and the device is On.

Situational rules may consist of conditions and reaction. The

conditions may be expressed as boolean expressions of states.

The reaction may be preventive, by enforce a proper operation,

or defensive, for example, by rebounding or notifying the

operators about the rule violation. The reaction part may reflect

our prediction of the costs of the reaction options.

Situational rules are attributes of scenarios. Examples of

situational rules are:

 In functional computer operation, when the available

disk space is critically low, the system should advice

the operator to clean it.

 In the production of dangerous materials, when the

container temperature is higher than a safety threshold,

the system should notify the operators and enforce

safe-mode operation.

Examples of generic rules:

 When in a functional scenario, risky features should be

disabled. The need for imposing this rule is

demonstrated by the Torrey Canyon and the

Afghanistan friendly fire accident, and many other.

 During the operation of safety-critical scenarios,

safety backup features should always be available and

enabled. The TMI accident (1979) demonstrates the

risks of erroneous disabling of the backup pump.

Typically, the definition of situational rules is in the scope of

systems engineering. The validation of the situational rules may

be based on faking exceptional situations, and evaluating the

HSI reaction to the faked situations.

H. Rule based exceptional handling

A situation is regarded as exceptional if it does not comply

with the rules applicable to the active scenario. The best design

strategy to enforce compliance with the rules is by disabling or

avoiding exceptional situations. Method for avoiding

exceptions include rebounding from errors, or providing the

operator with a forecast of the effect of optional events.

Exception handling is required when we cannot prevent the

exception, in cases when the exception is due to an external

hazard, a hardware fault, a power failure, or a communication

interrupt, or a design or implementation mistake. The design

should provide means to accommodate them, by notifying the

operators about operating in high-risk situations, by prompting

the operators to take actions, and by guiding them in the

recovery procedure.

I. Unexpected situations

The situational model includes only part of the situations,

those included in the situation scope of the scenarios. Most of

the situations are not included in the scope of any of the

scenarios. For example, in the elementary system describe

earlier, only two of the four combinations are expected.

Similarly, in the Therac 25 example, only two of the four

combinations of current- electron beam are expected. In

hindsight we know that the Therac 25 accidents are due to

operating the system in a mixed mode of high current and full

electron beam, which is not in the situational scope of X-ray

testing scenario, nor of the E-beam treatment scenario. These

situation are unexpected, and their root may be in mistakes in

the definition of the situational rules, or in bugs.

The challenge is of handling unexpected situations: the

system design should prevent them, and notify the operators

about operating in such situations. Special safe-mode

procedures may be designed to handle them.

J. Activity models

The system activity may be defined in terms of the system

reaction to events. Typically, the reaction depends on the

operational conditions, which are defined by the system

situation and by external conditions. An activity model is a

description of the activities constrained by scenarios. It may be

expressed in terms of activity rules.

K. Activity rules

The activity rules define the reaction to events in terms of

scenarios. An activity rule may describe normal interaction, or

ways to prevent diversion from normal to exceptional situation.

Interaction rules define optional responses to an event, in a

particular situation, depending on the scenario. Examples of

preventive rules are.

 Safety features should not be disabled while in high-

risk scenario.

 Transition to a functional scenario should be avoided

when any of the safety features is disabled.

Typically, the definition of activity rules is in the scope of

systems engineering.

L. Protective rules

Protective rules may be derived from situational rules by

examination of the possible transitions from normal situations

to exceptional situations.

For example, examine the situational rule about the

availability of safety features during safety-critical functional

scenarios. Depending on the costs of automated suspension of

the functional operation, the system may either suspend the

functional operation, or notify the operators about the risks of

operating without the safety feature. Protective rules derived

from this situational rule are:

 The system should prevent or warn the operators about

disabling the safety feature while in a functional

scenario

 The system should prevent scenario transition from

maintenance to functional when the safety feature is

disabled.

The validation of the protection rules may be based on faking

exceptional situations or events.

M. Activity protocols

The activity rules may be formalized in terms of protocols of

event-response. The responses to events may include changing

of the operational scenario. The activity model may include

special protocols for handling the operator’s control. For

example, a protocol for responding to disabling a safety feature

in a functional scenario may consist of two steps:

1. Rebounding: prompting the operators to regret or to

confirm their intention

2. Switching to a safe scenario, such as maintenance,

idle, safe-mode or shutting down.

N. Transition synchronization

Following a request to change the active scenario, the system

needs to activate the situational rules that apply to the new

scenario. By definition, changing a situational rule of a scenario

involves changing of a state of at least one system element.

Changing the state of a system element may be time consuming.

The Therac 25 accident demonstrates a challenge of responding

gracefully to synchronization delay, and to suspending the

operation until the scenario transition is complete.

Transient scenarios define the system response to events

during the transition. During a transient scenario, the system

may operate in a special sync mode. The design should include

special features for enforcing graceful synchronization, such as

disabling risky activity, notifying the operators while in

synchronization, warning the operators in case of failure, and

handling the recovery.

While in a transient scenario, the system may operate in a

special transition mode. The operation in the transition mode

may be initially automated, by default. If applicable, the

operators may have an option to override the automated

behavior.

O. Transition models

A transition model is a description of the procedure for

changing the situational rules during the scenario transition.

Transition models may describe ways to capture and notify on

exceptions, and escape procedures, in response to exceptions.

The transition model may include a special transient

scenario, representing the operation until the new scenario is

synchronized, and a special escape scenario, representing the

case of transition failure. The operators need to know about

such cases, and the system should provide an exception warning

when the situation does not comply with the new constraints.

The transition model may include special features for enforcing

graceful delay or failure, such as disabling risky activity and

notifying the operators while in the transient scenario.

A generic synchronization model may be expressed using a

standard protocol, including:

 A transition request, pointing at the target scenario,

and setting a sync time out limit

 Activating processes aimed at applying the rules

associated with the target scenario

 Waiting until the situation complies with the rules of

the target scenario. While waiting, the system should

indicate that the system is in a transient scenario

 After complying with the rules of the target scenario,

it becomes the active scenario

 In case of reaching the timeout limit, provide a

warning message and initiate a recovery procedure.

P. Transient timeout adjustment

An initial value of the sync timeout may be defined in the

transition specification, but this value might not fit all

circumstance. The design may provide means for measuring the

actual transition time, and for adjusting the timeout for each of

the transitions, based on statistics of the measurements. The

adjustment may be automated or manual.

Q. Recovery models

A generic recovery model may be expressed using a standard

protocol, including:

 Notifying the operators about the transition failure,

prompting to recover the situation prior to the

transition request

 Notifying the operators about the recovery results

 Enter a special safe-mode operation.

V. ENGINEERING

As discussed by Harel & Zonnenshain (2019)[25] the

engineering of HSI is based on defining operational rules,

which define exceptions by exclusion from normal behavior.

A. HSI statecharts

SysML offers a simplified version of UML statecharts for

graphical representation of state transitions. This kind of

representation is not adequate for modeling the interaction

between state machines. The problem is that events designed

using SysML statecharts are error-prone. The HSI version of

statecharts supports describing various attributes of mutual

effects between state machines, as well as enforcing error-free

state transitions.

B. Evaluation

For evaluating the model, we may employ the Layer Of

Protection Analysis (LOPA) technique, commonly used in the

process industry for assessing the protection needs. The

evaluation is based on testing the effects of protection layers

and calculating the potential risks (Baybutt, 2002)[4].

C. Infrastructure

Utility-critical systems should incorporate means, including

sensors, trackers, recorders, and analyzers, for informing the

operators and the developers about the time they could save.

The infrastructure for model-based HSI may include special

means intended to save the time wasted in handling exceptional

situations. The means to avoid exceptional situations and to

support exception management may be integrated into the

model used to design the HSI. For example, they may include

model interpreters that enable customizing the model transition

to software units.

D. Data analytics

Tracking tools enable capturing and measuring the costs of

daily, low-cost events (Harel, 1999)[17]. Harel et al. (2008)[24]

demonstrated a way to apply data analytics in automated

usability testing, and Harel (2009)[19] demonstrated that data

analytics may be used to identify problem indicators. Universal

tracking is crucial also for enabling learning from rare events.

E. Digital twins

A digital twin is an executable virtual model of a physical

thing or system (Wright & Davidson, 2020)[55]. The concept

of digital twins is based on the concept of virtual prototyping,

dated in the 80s, in which a model was used to replace system

units by emulation. This features enables early integration, by

using virtual units instead of the real components that are not

ready yet for the integration. This feature was recently adopted

for systems engineering in the form of digital twins.

Digital twins enable to control the system operation

according to the STAMP paradigm: the post-deployment

emulation enables detection of incidences by comparing the

output of the emulated unit with that of the real unit, as depicted

in the following figure:

Fig. 13 Digital twins used for incidence detection

Digital twins may be integrated in MBHSI, for seamless

change validation according to the following figure:

Fig. 14 The role of digital twins in model based HSI

F. Customizing

The seven-layer models are generic, applicable to various

domains and industries. To adapt it to a particular project these

models need customization. The customization process is

according to the order above, as the definition of each model

depends on that of the previous one.

G. Simulation

The transition from the customized model to a prototype

and/or digital twin should be automated. The automation may

be based on simulation of the orchestrated version of the

system, using standard software packages that process the

custom parameters.

H. Model development

Models enable saving development costs by enforcing

seamless adaptation to design changes. The models should be

defined iteratively, each cycle is followed by evaluation.

Typically, the evaluation ends up with a list of requirements for

design changes, intended to reduce the operational complexity.

The development might end when it is obvious that all known

significant risks are removed. Criteria form ending the

development may be based on the Service Integrity Level (SIL)

evaluation method commonly applied in the process industry

(Redmill, 2000)[40].

I. Testability

Testing rare events is challenging. To enable testing

exceptions the system should incorporate a special tester unit

that fakes various kinds of faults, in various conditions, that the

testing team can customize. A special scenario should be

defined, which is part of the operational conditions.

J. Adjustability

The setting of the alarm and safety thresholds of the various

risk indicators is a delicate design goal, aiming to balance

properly the rate of nuisance of the alarms. A special utility may

enable inform the system administrators about the margins of

alarms and safe-mode operation.

VI. CONCLUSIONS

Primary barriers to maximizing the utility are limitations of

operating in exceptional situations, typically attributed to

errors, hampering the system’s usability. The conclusions from

this study are that we can learn from case studies drawn from

various domains and industries, and formulate a universal HSI

model. This model may consist of layers of GMMs, expressed

in terms of rules for system definition. This model is still

conceptual. It is should be verified and validated in future

studies. In addition, this model may be engineered, by

developing guidelines for implementing the model in real

protects.

Principles of HSI reliability may be phrased as scenario-

based rules and protocols for risk detection, recognition, and

identification. A challenge for the 4th industrial revolution is to

develop a methodology for cross-industry model-based

integration design. This study demonstrates that we can define

universal rules, suggesting that this goal is achievable. These

rules may be validated in future studies, and evolve to

engineering guidelines. The measures proposed for the rule

validation may be obtained by statistics of measurements of the

system performance. Validation of the rules may be conducted

by analysis of the activity obtained by trackers of the system

performance, using statistical metrics, followed by traditional

usability testing in the corresponding scenarios. The article calls

to develop and integrate tools for recording and analysis of the

system activity during the operation, required to implement and

validate the model.

Finally, the article explores various protection patterns, but

certainly not for all possible design challenges. It may be

interesting to explore operational rules for various operational

scenarios.

ACKNOWLEDGMENT

I thank Avigdor Zonnenshain, Uzi Orion, Moshe Weiler,

Sharon Shoshani, Ami Harel and other members of INCOSE-

IL, Gordon Center for Systems Engineering, Iltam, Israel

Resilience working group, Israeli HSI working group, and HSI

international working group for their support and for providing

helpful comments on previous works on the subject, and also

the HSI2021 reviewers who provided helpful comments on the

previous version of this article.

REFERENCES

[1] Bainbridge, L 1983, Ironies of automation. Automatica. 19 (6): 775–779.

doi:10.1016/0005-1098(83)90046-8. ISSN 0005-1098

[2] Baker, CC & Seah, AK 2004, Maritime Accidents and Human
Performance: the Statistical Trail Paper presented at MARTECH 2004,

Singapore, September 22-24

[3] Barricelli, BR, Casiraghi, E and Fogli, D 2019, ‘A Survey on Digital

Twin: Definitions, Characteristics, Applications, and Design

Implications’, IEEE Access, November, PP(99):1-1

[4] Baybutt, P 2002, Layers of Protection Analysis for human factors (LOPA-
HF), Process Safety Progress 21(2):119 – 129,

DOI:10.1002/prs.680210208

[5] Berard, J 2013, Accelerating Leadership Development: Practical
Solutions for Building Your Organization's Potential, John Wiley & Sons,

25 Jul 2013.

[6] Boy, GA, 2013, Orchestrating Human-Centered Design. New York:
Springer. ISBN 978-1-4471-4338-3

[7] Checkland, PB 2001, Soft Systems Methodology, in J. Rosenhead and J.

Mingers (eds), Rational Analysis for a Problematic World Revisited.
Chichester: Wiley

[8] Clark CW, & Dukas R 2003, The behavioral ecology of a cognitive
constraint: limited attention. Behav Ecol 14:151–156.

[9] Cohen, J 2001, A Tribute to Alain Colmerauer. Theory and Practice of

Logic Programming. 1 (6): 637–646.
[10] Copeland, S 2020, On serendipity in science: discovery at the intersection

of chance and wisdom, Synthese: an international journal for

epistemology, methodology and philosophy of science
[11] Dekker, S 2012, Just culture: Balancing safety and accountability,

Ashgate.

[12] Drury CG, Woodcock K, Richards I, Sarac A, Shyhalla K. A New Model
of how People Investigate Incidents. Proceedings of the Human Factors

and Ergonomics Society Annual Meeting. 2002;46(13):1210-1214.

doi:10.1177/154193120204601343
[13] Endsley, MR 1995, Toward a theory of situation awareness in dynamic

systems. Human Factors. 37 (1): 32–64.

doi:10.1518/001872095779049543
[14] Fuhs, A 2008. Hybrid vehicles: and the future of personal transportation.

CRC press.

[15] Gabriel, RP & Steele, GL 2008, A Pattern of Language Evolution.
LISP50: Celebrating the 50th Anniversary of Lisp. pp. 1–10.

[16] Grimm, T 1998, The Human Condition: A Justification for Rapid

Prototyping. Time Compression Technologies, vol. 3 no. 3. Accelerated

Technologies, Inc. May 1998
[17] Harel, A 1999, Automatic Operation Logging and Usability Validation,

Proceedings of HCI International '99, Munich, Germany, Vol. 1, pp.

1128-1133
[18] Harel, A 2006, Alarm Reliability, User Experience Magazine, Vol 5.,

Issue 3.

[19] Harel, A 2009, Statistical Analysis of the User Experience, Invited talk -
2nd Meeting of isENBIS, Hertzelia, Israel

[20] Harel, A 2010, Whose Error is This? Standards for Preventing Use Errors,

The 16th Conference of Industrial and Management Engineering, Tel-
Aviv

[21] Harel, A 2011, Comments on IEC 60601-1-8. Letter submitted to IEC/TC

62 working group.
[22] Harel, A 2020, System Thinking Begins with Human Factors: Challenges

for the 4th Industrial Revolution. in R.S. Kenett, R.S. Swarz and A.

Zonnenshain (Eds), Systems Engineering in the Fourth Industrial
Revolution: Big Data, Novel Technologies, and Modern Systems

Engineering, Wiley

[23] Harel, A 2021. Towards Model-based HSI Engineering: A Universal HSI
Model for Utility Optimization, to be published in Proceeding of the

second HSI conference, San Diego, US.

[24] Harel, A, Kenett, R & Ruggeri, F 2008, - Modeling Web Usability
Diagnostics on the basis of Usage Statistics. in: Statistical Methods in

eCommerce Research, W. Jank and G. Shmueli editors, Wiley.

[25] Harel, A & Zonnenshain, A 2019, Engineering the HSI. Proceedings of
the first HSI conference, Biarritz, France

[26] Haselton MG, Nettle D, Andrews PW 2005. ‘The evolution of cognitive

bias.’ (PDF). In Buss DM (ed.). The Handbook of Evolutionary
Psychology. Hoboken, NJ, US: John Wiley & Sons Inc. pp. 724–746.

[27] Hatchuel, A, Le Masson, P & Weil, B 2011, Teaching innovative design

reasoning: How concept–knowledge theory can help overcome fixation
effects. Published online by Cambridge University Press

[28] Hollnagel, E 1983, Human Error. Position Paper for NATO Conference

on Human Error. Bellagio, Italy.
[29] Hollnagel, E 2006, Resilience: The challenge of the unstable. In:

Hollnagel, E., Woods, D. D. & Leveson, N. C. (Eds.), Resilience

engineering: Concepts and precepts (p. 9-18). Aldershot, UK: Ashgate.
[30] Hornikx, J 2018, Combining Anecdotal and Statistical Evidence in Real-

Life Discourse: Comprehension and Persuasiveness. Discourse Processes
Vol 55, Issue 3.

[31] Jackson, S & Ferris, T 2013, Resilience Principles for Engineered System.

Systems Engineering, 16(2), 152-164. doi:10.1002/sys.21228.
[32] Jacobson, I 1987, Object-oriented development in an industrial

environment. ACM SIGPLAN Notices. 22 (12): 183–191.

[33] Kariuki, SG & Loewe, K 2006 Increasing Human Reliability in the
Chemical Process Industry Using Human Factors Techniques, Process

Safety and Environmental Protection 84(3):200-207

[34] Leveson, N 2004, A New Accident Model for Engineering Safer Systems.
Safety Science 42(4):237-270

[35] Luqi 1989, Software Evolution through Rapid Prototyping. IEEE

Computer. 22 (5): 13–25. doi:10.1109/2.27953. hdl:10945/43610
[36] Norman, DA 1983, Design Rules Based on Analyses of Human Error.

Communications of the ACM 26(4):254-258

[37] Norman, DA and Draper, S 1986, User Centered System Design: New
Perspectives on Human-Computer Interaction Lawrence Erlbaum

Associates.

[38] PlaneCrashInfo, 2014, Causes of Fatal Accidents by Decade
http://planecrashinfo.com/cause.htm

[39] Shapiro, E. 1983, Algorithmic program debugging. Cambridge, Mass:

MIT Press. ISBN 0-262-19218-7
[40] Sheard, SA and Mostashari. A 2009, Principles of complex systems for

systems engineering. Systems Engineering, vol. 12, no. 4, pp. 295-311.

[41] Shewhart, WA 1931, Economic Control of Quality of Manufactured
Product ISBN 0-87389-076-0

[42] Shneiderman, B 1980, Software Psychology: Human Factors in

Computer and Information Systems. Little, Brown
[43] Shneiderman, B 1986, Designing the User Interface: Strategies for

Effective Human–Computer Interaction, 1st edition. Addison-Wesley

[44] Singh, S 2015, NHTSA CrashStat, Critical Reasons for Crashes
Investigated in the National Motor Vehicle Crash Causation Survey, DOT

HS 812 115

[45] Spool, JM. 2014, Scenarios and Journey Maps Help Designers Become
Storytellers. User Interface Engineering, May 7.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0005-1098%2883%2990046-8
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0005-1098
https://www.researchgate.net/profile/Barbara-Barricelli?_sg%5B0%5D=zFIveeKd4lQ6XhwKWfLWWMt8Yt5ZmsMZxFsx9H7zkmJjfPxEU0Cb3KCkglvxXfNKE3Y_aHY.zetd7K12nlM2-huA_IPynFU2YTPZfj1XvC3kHi9ZFSsnizMBxZmTppTu5ThCv8oF9b7cLe9sIN34jUN2jAcv9Q&_sg%5B1%5D=MZOrc5m3IJs1NFJy3m1n6ltwzEOi4_Mg1-NR4qdBs_MoPwW-LEVzmY9XMtlUM_1cSjFaQkM.5sgXX3ze_JnqupFC2IJGBq9cmDPZsm7-m0kyDP4EZpJX8mbpA7uH0d2e8aYdRYdeQtVx2d6VQJIhZe61QQQJYQ
http://dx.doi.org/10.1002/prs.680210208
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4471-4338-3
https://research.tudelft.nl/en/publications/on-serendipity-in-science-discovery-at-the-intersection-of-chance
https://research.tudelft.nl/en/publications/on-serendipity-in-science-discovery-at-the-intersection-of-chance
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1518%2F001872095779049543
https://en.wikipedia.org/wiki/Richard_P._Gabriel
https://en.wikipedia.org/wiki/Guy_L._Steele,_Jr.
http://www.dreamsongs.com/Files/PatternOfLanguageEvolution.pdf
http://www.sscnet.ucla.edu/comm/haselton/papers/downloads/handbookevpsych.pdf
http://www.sscnet.ucla.edu/comm/haselton/papers/downloads/handbookevpsych.pdf
https://www.tandfonline.com/toc/hdsp20/current
https://www.tandfonline.com/toc/hdsp20/current
https://www.tandfonline.com/toc/hdsp20/55/3
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2F2.27953
https://en.wikipedia.org/wiki/Hdl_(identifier)
https://hdl.handle.net/10945%2F43610
http://planecrashinfo.com/cause.htm
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-262-19218-7
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-87389-076-0

[46] Swatton, PJ 2011, "14.11", Principles of Flight for Pilots, Chichester, UK:

Wiley & Sons Ltd

[47] Taleb, NN 2007, The Black Swan: The Impact of the Highly Improbable.
Random House Trade Paperbacks.

[48] Weaver, W 1948. Science and complexity. American Science, vol. 36, pp.

536-544.
[49] Weiler, M & Harel, A 2011, Managing the Risks of Use Errors: The ITS

Warning Systems Case Study, The Sixth Conference of INCOSE-IL,

Hertzelia, Israel.
[50] Weinberg, GM 1971, The Psychology of Computer Programming. Van

Nostrand Reinhold.

[51] Wheeler, DJ & Chambers, DS 1992, Understanding Statistical Process
Control ISBN 0-945320-13-2

[52] Wickens, CD 1992, Engineering psychology and human performance

(2nd ed.). Harper Collins Publishers.
[53] Wiener, N 1948, Cybernetics; or, Control and communication in the

animal and the machine. Technology Press, Cambridge.

[54] Wilson, TD 1999, Models in information behaviour research, Journal of
Documentation, Vol. 55 Iss 3 pp. 249 – 270

[55] Wright, L., Davidson, S. How to tell the difference between a model and

a digital twin. Adv. Model. and Simul. in Eng. Sci. 7, 13 (2020).
https://doi.org/10.1186/s40323-020-00147-4

[56] Zonnenshain, A & Harel, A 2015, A practical guide to assuring the system

resilience to operational errors, INCOSE. Annual International
Symposium, Seattle.

Avi Harel received his B.Sc. (1970) and

M.Sc. (1972) degrees in mathematics from
the Technion, the Israeli Institute of

Technology, in Haifa, Israel. For his M.Sc.

degree he received an outstanding grade.
For his master's thesis he was granted the

Landau's award. Between the years 1985

and 1989 Avi studied Behavioral and
Management Sciences at the faculty of

Industrial Engineering of the Technion.

Between 1975-1992 he worked for
Rafael, the Armament Development

Authority of Israel, during which he gained

experience in working with a wide range of

applications, platforms, operating systems,

programming languages and development
environments. Between 1977-1980 he was

the manager of 30 people in the Software

Department of Rafael's Division of Electronics. Between 1980-1983 he was the
manager of the leading project of the Electronics Division of Rafael. Between

1983-1985 he designed the software for a touch operated telephone set for the

Design Interpretive department of BNR, Canada. Between 1985-1987 he
developed a generator of user interfaces, for use by frequent users. Between

1988-91 he conducted various projects in Human Factors engineering in Rafael.

His work experience includes software engineering, system engineering and
ergonomics in Rafael, Nortel, IBM, Attunity and Ergolight. Since 2007 he

focuses on developing and publishing methods for preventing human errors in

system operation. This activity is conducted in collaboration with the Israeli
branch of INCOSE and with the Gordon Center for Systems Engineering of the

Technion, Haifa.

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-945320-13-2

