
 

 

 

Abstract— Most accidents are commonly attributed in hindsight 

to human errors, yet most methodologies for safety focus on technical 

issues. According to the Black Swan theory, this paradox is due to 

insufficient data about the ways systems fail. The article presents a 

study of the sources of errors, and proposes a methodology for utility-

oriented design, comprising methods for coping with each of the 

sources identified. Accident analysis indicates that errors typically 

result from difficulties of operating in exceptional conditions. 

Therefore, following STAMP, the focus should be on preventing 

exceptions. Exception analysis indicates that typically they involve 

improper account of the operational scenario, due to deficiencies in the 

system integration. The methodology proposes a model, which is a 

formal definition of the system operation, as well as principles and 

guidelines for safety-oriented system integration. The article calls to 

develop and integrate tools for recording and analysis of the system 

activity during the operation, required to implement and validate the 

model. 

 

Keywords— accidents, complexity, errors, exceptions, interaction, 

modeling, resilience, risks  

I. HUMAN ERRORS 

Studies about the sources of accidents indicate that most of 

them are typically attributed to human errors, or improper 

usage. The factors mentioned by the reviewer are in the 

category of human errors. Human errors explain most accidents 

in the air (60%, PlaneCrashInfo 2014)[38] sea (80%, Baker & 

Seah 2004)[2], driving (90%, Singh 2015)[44], and in the 

industry (60-80%, Kariuki & Löwe 2006)[33]. 

Errors are incidental. Weinberg (1971)[50] reported on 

typical subconscious design mistakes, due to egocentric 

programming, hampering the productivity of the computer 

users. Shneiderman (1980)[42] promoted the concept of 

empathic programming suggested by Weinberg, and proposed 

few principles for avoiding such design mistakes. Norman 

(1983)[36] classified activity errors due to omission, or to 

taking the wrong action. A wrong action may be either a slip or 

a mistake. A mistake may be in situation perception or in 

deciding which action to take. However, following Bainbridge 

observation about ironies of automation (1983)[1], Weiler & 

Harel (2011)[49] argue that judgment errors under stress are 

due to relying on irrelevant prior experience. 

The meaning of the term "human error" or “improper usage” 

is ambiguous. Accident analyses indicate the most of these 

instances involve several factors, most notable are component 

malfunctions. Often, the error is attributed in hindsight to the 

person who happened to be nearby, typically, the operator who 
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was on duty (Dekker, 2007)[11]. Most accidents may be 

attributed to human limitations to perform perfectly in extreme 

conditions, such as exceptional situations due to design 

mistakes and bugs. 

Following Hollnagel (1983)[28] the model presented here 

assumes that the term “error” is an engineering bias, diverting 

the accountability for design mistakes, resulting in failure to 

assist in the collaboration with the operators. Harel, (2010)[20] 

suggested that “in attributing the incident to the trigger, instead 

of the situation, the system stakeholders typically become 

sloppy and careless about the design features that could have 

prevented the incident”, as demonstrated in the following 

figure: 

 

Fig. 1 Attributes of errors 

According to Zonnenshain & Harel (2015)[56] the term 

refers to activities of the responsible organization intended to 

divert the focus of investigations from the management to the 

operators. For example, Harel (2011)[21] analyzed various 

ways in which vendors of equipment for medical alarms infect 

the standards by diverting the accountability for failure to the 

operators. The implication of this observation is that rather then 

investing on error analysis, the design should focus on 

preventing failure. 

Barriers to seamless operation include instances of confusion 

and hesitation of the operators, due to anxiety about potential 

loss. Often, the confusion is attributed in hindsight to operator’s 

errors. Typically, we expect the operators to be rational. 

However, as prior studies demonstrated the meaning of the term 

rationality is vague (Harel, 2020)[22]. Rationality relies on the 

information that the operators perceive. However, the 

information that they receive is not stable and not objective. It 
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is subjective and dynamic. 

A. Human performance 

A common measure of the system value is in terms of 

performance. Typically, the meaning of this term depends on 

the purpose and functions of the system. Ideally, it is associated 

with metrics such as throughput, bandwidth, power 

consumption, etc. However, the perceived performance is 

typically industry and domain specific. In practice, it depends 

also on implicit factors, which are not tangible or testable. 

Often, the implicit factors are more significant than the 

measureable and testable factors. Typically, the term refers to 

the perceived efficiency, namely, how well the system 

performs.  

The system view of performance is based on the wrong 

assumption that the operators may do their job perfectly. The 

human factors view of performance focuses on bottleneck due 

to the limitations of the human operators, such as attention 

deficit, stress, when the attention demands are high, such as in 

uncertainty, or in multi-tasking (e.g. Wickens, 1992)[52]. 

B. Limited attention capacity 

The human attention capacity is limited. When under stress 

the operators are liable to err, even when they pay their full 

attention to the operation (Clark and Dukas, 2003)[8]. For 

example, under stress, the operators may focus on solving a 

problem suggested by a particular alarm, and miss indications 

about other critical problems. 

C. Situation awareness 

This concept is about the operator’s failure to perceive the 

system and environmental elements as expected, or to 

comprehend the significance of the situation perception. 

Situation awareness is critical for successful decision-making 

across a broad range of systems (Endsley, 1995)[13]. For 

example, Harel (2006)[18] explained that operational reliability 

and quality are critical for enforcing proper reaction to the 

alarms. 

D. Operating in exceptional situations 

A key hurdle to maximizing the system utility is the 

difficulties that the operators experience when the system is in 

exceptional situations (Zonnenshain & Harel, 2015)[56]. The 

reason for this is that regular training targets normal conditions. 

During normal operation, the operators encounter exceptional 

situations only occasionally, which is not sufficient for effective 

learning. Whenever they encounter an exceptional situation, 

they waste too much time trying to find their way around it. For 

example, informal studies on the productivity in text editing 

indicate that about half of the time is wasted in recovery from 

errors. 

The means to avoid exceptional situations and to support 

exception management may be integrated into the model used 

in the system design. 

E. Accountability 

The article advocates the HF version of Murphy’s Law: if the 

design enables the operators to fail, eventually they will. In 

particular, improper usage such as failure to handle situations 

with which the operators are not familiar, should be attributed 

to design mistakes. Therefore, the article advocates a design 

goal of protecting the system from human errors. According to 

the proactive version of Murphy’s Law, it is the design’s 

responsibility to prevent situations in which the operators might 

fail (Harel, 2011)[21]. 

F. Operational reliability 

Operational reliability is the system's capability to minimize 

the costs of operating in exceptional conditions. Operational 

reliability may be defined as “The ability of an apparatus, 

machine, or system to consistently perform its intended or 

required function or mission, on demand and without 

degradation or failure” (Berard, 2013)[5].  

G. The design challenge 

The article assumes the proactive version of Murphy’s Law, 

attributing operational problems to design defects, of enabling 

the operational problems. The article assumes a variant of 

Taleb’s Black Swan theory (2007)[47], illustrated in the 

following figure: 

 

Fig. 2 Operator’s errors are due to design mistakes 

The figure illustrates that failure attributed to the operators 

should rather be attributed to design mistakes. Most design 

mistakes are latent, waiting for the opportunity to emerge. Only 

those with costly results are observed, and consequently 

attributed to operator’s errors. 

II. DESIGN CHALLENGES 

A. Usability 

Believing that it is the designer’s responsibility to reduce the 

costs of operation, Norman and Draper (1986)[37] explained 

that to avoid the loss, the system design should be user-

centered. Shneiderman (1986)[43] proposed eight golden rules 

for user interface design, based on Human-Centered Design 

(UCD) principles of usability assurance. The quality of the 

system usability affects the operator’s productivity, system 

safety, and the experience of using consumer products. 

B. System Integration  

Prior studies indicate that HCD may prevent some of the 

errors, but not those due to flaws in the system integration. 

Indeed, many accidents are due to the operator’s inability to 



 

 

detect, recognize, or identify situations in which not all units 

assume the same operational conditions. Examples of such 

accidents are the Therac 25, Torrey Canyon, TMI, Bhopal, and 

may friendly fire accidents. In hindsight, investigators attribute 

the coordination problem to operator’s errors, assuming that the 

operators could have manage the exceptional situation. In 

reality, as Bainbridge (1983)[1] observed, operators are likely 

to fail in the task of coping with rare situations. Therefore, a key 

design challenge is to ensure coordination by design. 

C. Human-System Integration  

In many accidents, the coordination problem was between 

the operator and the technical system. The UCD view of these 

incidents is of the operator’s situation awareness, attributing the 

failure to the human operators. Human-System Integration 

(HSI) is a special sub discipline of system integration, 

attributing coordination failure to the system design, rather than 

the operators. Accordingly, HSI engineering descends from 

systems engineering.  

D. Operational complexity 

A primary hurdle to operational reliability is operational 

complexity. Operational complexity is about possible 

confusion, and it applies also to very simple systems. Two 

common error modes attributed to operational complexity are 

physical confusion, such as control confusion, and logical 

confusion, such as mode confusion.  

Control confusion is an instance of applying a wrong control 

due to similarity or proximity, as illustrated in the following 

figure: 

  

Fig. 3 Confusion delay timers 

This type of complxity applies to many consumer systems, 

such as home appliances: Laundry, drier, air conditioner, 

furnace, and oven. It also applied the many B-17 accidents in 

WW II. Control confusion may be resolved within the 

discipline of HCD. Often, control confusion may be resolved 

by redundancy analysis, according to the principle of Occam’s 

Razor. 

Mode confusion is an instance of activating a control in the 

wrong mode, resulting in an unintentional effect. Examples of 

critical mode confusion are of activating setup or maintenance 

features during functional operation. 

The number of situations grows exponentially with the 

number of states. Most of them are exceptional. Following 

Weaver (1948)[48] complexity may be defined as the degree of 

difficulty in predicting the properties of a system if the 

properties of the system's parts are given. Sheard and 

Mostashari (2009)[40] categorized complexity as either 

structural, dynamic, or socio-political.  

Many incidences of operational difficulties are due to 

inconsistent system response to the operator’s commands. 

Accordingly, we may define operational complexity in terms of 

the amount and variety of condition-dependent activities. 

Operational complexity may be defined in terms of conditional 

activity, such as the conditions for human-machine interaction 

or inter-unit coordination, namely, the consistency of the 

reaction to events. If the design enables various reactions to a 

specific event, depending on the operational scenario, then this 

event is error-prone, contributing to the complexity. Reducing 

the operational complexity is critical for maximizing the HSI 

utility. 

The article proposes to prevent unintentional mode setting by 

impeding the transition, as illustrated in the following figure: 

 

Fig. 4 Preventing slips 

The article proposes to resolve this kind of problems by 

scenario-based design and testing.   

E. The performance envelope 

Hollnagel (2006)[29] suggested that system failure is often 

associated with operating in extreme conditions. The limits of 

performance may be defined by the performance envelope. The 

performance envelope is an extension of the concept of flight 

protection envelope. For example, the speed of an airplane is 

limited by the stall threat and the Mach number, and the altitude 

is limited by the Coffin Corner (Swatton, 2011)[46]. These 

conditions should be considered setting the performance goal. 

The performance envelope may be optimized by design 

supporting seamless operation. 

F. Operational constraints 

According to the principles of cybernetics, to avoid failure, 

the system should control its behavior, similarly to animals 

(Wiener, 1948)[53]. This principle is key to endorsing HSI 

reliability. HSI reliability relies on operating according to rules. 

In 1972 Alain Colmerauer and Philippe Roussel developed 

Prolog, a rule-based computer language (Cohen, 2001)[9]. 

Shapiro (1983)[39] studies the using Prolog for algorithmic 



 

 

program debugging. Leveson (2004)[34] adopted the principles 

of cybernetics and proposed the STAMP paradigm, applying 

the principle of self-control in a hierarchy of system views. The 

Prolog language demonstrates the feasibility of the STAMP 

paradigm. Operational constraints are operational rules 

constraining the system operational (Harel & Zonneshain, 

2019)[25]. Typically, these constraints are scenario-dependent. 

G. Operational exceptions 

An exception is a situation intruding the performance 

envelope. HSI exception extends the concept of software 

exceptions, introduced in LISP (Gabriel & Steele, 2008)[15]. 

The extension is in the structures of static, dynamic, or 

behavioral exceptions. The original software exception has two 

components: a probe in the program, and an exception handler. 

The probe is actuated when the program reaches this probe. In 

contrast, operational exceptions reside in the system situations 

and events. The exceptional situations are handled by scanning 

the situational constraints, and the exceptional events are 

handled at the event handling. Applying system thinking 

(Leveson, 2004)[34], HSI focusses on rare situations, and the 

HSI models focus on operational rules (Harel & Zonnenshain, 

2019)[25]. 

H. Operational hazard control 

A hazard is a potential source of loss. Hazard control is used 

in industry to mitigate the risks of hazards. Operational hazard 

control is a method of hazard control focusing on HSI. It is 

inspired by methods of Statistical Process Control (SPC, 

Wheeler & Chambers, 1992)[51] and of Statistical Quality 

Control (SQC, Shewhart, 1931)[41]. Operational hazard 

control eliminates the risks of exceptional events and of 

operating in exceptional situations.  

I. Operational resilience 

According to the INCOSE Resilient Systems Working Group 

(RSWG), resilience is the ability to maintain capability in the 

face of adversity. Jackson and Ferris (2013)[31] presented 

principles for assessing and improving the resilience of 

engineered systems across their life cycle. Operational 

resilience is about HSI factors in resilience assurance 

(Zonnenshain & Harel, 2015)[56]. 

For example, we may explore various collaboration options 

in a minimal system, consisting of a simple engine with two 

states: On and Off, operated by a switch with states: On and 

Off. The functional option is complicated when the operator is 

required to support early detection and identification of 

malfunction. How will the operators know about instances of 

malfunction? How will they know if the problem is with the 

engine or with the switch? How will they identify problems in 

the connections? How will they know when the engine starts 

too slowly?   

An error-proof design may include sensors of the engine and 

switch states, and an indication when the state are not 

compatible with each other. In addition, the design may include 

indication of these states, to facilitate the troubleshooting. The 

sensors may also be used to notify on problems of starting or 

stopping the engine too fast or too slowly. The following figure 

illustrates the inter-state transitions as system variables.  

 
Fig. 5 Inter-unit state transitions 

The system may record the transition delays and generate 

distribution functions for these delays. The system design may 

make use of the distribution parameters, and include 

identification of extreme values, as well as extra means for 

alarming and emergency shut-down. The following figure 

illustrates how the design may define exceptional delays, and 

how the system may respond to exceptions: 

 
Fig. 6 Discretizing the system variables 

In the example, the threshold of sigma may be used for 

alarming, and the threshold of two sigma may be used for safe-

mode operation, such as emergency shut down. 

III. MODELING 

Scientific findings are documented in models, obtained in 

frameworks of meta-models of information behavior (Wilson, 

1999)[54]. For example, Following Fuhs (2008)[14] 

description of hybrid vehicles, Boy (2012)[6] suggested 

modeling the system operation in the form of orchestrating 

human-centered design.  

Models enable participation by diverse SMEs. Model-based 

engineering enables agile development of complicated systems. 

For example, Harel (1999)[17] demonstrated a model-based 

approach to usability testing, by capturing and analysis of 

instances of difficulties in using Windows applications. Also, 

Harel et al. (2008)[24] demonstrated a model-based method for 

automated analysis of website navigation based on usage 

statistics. Through simulation, models provide a gradual, 

seamless, reliable, modular transition from requirements to the 

implementation of digital twins and the final system. 

A. Model-based system integration (MBSI) 

The methodology of model-based engineering is inspired by 

https://www.sebokwiki.org/wiki/Life_Cycle_(glossary)


 

 

a similar methodology of rapid prototyping, developed in the 

framework of software engineering in the 70s (Grimm, 

1998)[16].   

MBSI is the modern systems engineering version of software 

prototyping, a concept explored in the 80s Model-based system 

integration (MBSI) enables early integration by simulation, 

resulting in shortening the integration phase and reducing the 

development costs. (Luqi, 1989)[35]. MBSI may consist of 

project-specific, functional features, as well as universal 

features applicable to maintenance, resilience, training, etc. The 

universal features may apply to various domains and industries.   

B. The operator’s view 

Jacobson (1987)[32] described a technique used at Ericson to 

capture and specify system requirements based on use cases. 

Today this technique is part of the Universal Meta Language 

(UML), commonly used in software design. The concept of use 

cases was migrated to systems engineering, in the framework 

of SysML. They are key to describing the designer’s view of 

the system behavior, required to support Model-based Systems 

Engineering (MBSE). The operator’s view of the use cases is 

called usage scenarios (Spool, 2014)[45]. HSI Meta Language 

(HSIML) is a meta-language used for the HSI design.  

C. Model-based HSI  

Failure is often attributed to latent defects, wear-out, 

unexpected environmental conditions, and improper usage 

(both accidental and malicious). Many developers are not aware 

of the risks of operating in exceptional situations. Therefore, 

they do not gain the education and resources required to 

mitigate these risks.  

Hollnagel (2006)[29] proposed two ways for modeling the 

system operation. The proactive approach is about how to 

describe normal behavior, and the reactive approach is about 

how to describe extreme events. HSI modeling focuses on 

universal methodologies of rule-based design, for the sake of 

reducing the operational complexity. According to the 

proactive approach to failure, the system design should support 

the operation also in extreme conditions. HSI modeling is a 

hybrid approach, in which we define normal behavior 

proactively, and we apply learning from failure. The orchestra 

illustration is proactive-oriented. The reactive part is by 

serendipitous learning from incidences (e.g. Copeland, 

2020)[10].   

Model-based HSI (MBHSI) is part of model-based 

engineering, focusing on the integration between the system 

and its operators. Model-based design enables seamless 

adaptation to design changes. Rule-based models enforce 

mitigating the risk of operational complexity. Model-based HSI 

facilitates the implementation of the HSI part of the digital twin 

(Barricelli et al., 2019)[3]. 

D. Learning from incidences 

The method applied in this study is actually a variant of the 

SSM methodology, which is critical system thinking, in 

generating patterns of system resilience (Checkland, 2001)[7], 

which is in the domain of Concept-Knowledge (C-K) theory 

employed in the design of social systems (Hatchuel et al., 

2011)[27]. The goal is to identify patterns of failure, and to 

assign method employed in various industries. The 

methodology for pattern generation is based on abstraction of 

the system elements and activity, and matching abstracted 

elements of various incidences. This is illustrated in the 

following figure: 

  
Fig. 7 Elements of modeling the system operation 

Incidence modeling may be based on four types of evidence: 

anecdotal, statistical, causal, and expert evidence (Hornikx, 

2018)[30]. By its nature, anecdotal evidence is subject to 

systematic deviation from the norm and/or rationality in 

judgment (Haselton et al. 2005)[26]. Expert investigation is 

also biased: Drury et al. (2002)[12] found that during the 

investigation stage the number of facts considered grows, but 

then decreases at the reporting stage. They conclude that the 

incident reports may not consider all causal factors. In HSI 

reliability studies, these biases need special attention.  

Modeling may be based on the gradual abstraction of 

incidences and solutions. An incidence is an instance of 

crossing the limits of the performance envelope. The reactive 

part in HSI modeling is by cross-domain learning from 

incidences.  

We may distinguish between two types of incidences: those 

due to rare events and those due to daily, low-cost events. Taleb 

(2007)[47] argued that it is impossible to predict incidences due 

to Black Swans (rare events) because a-priori we do not have 

the data required for the prediction. 

The first stage in the methodology generation is to create a 

bank of generic failure modes, based on failure analysis. The 

following figure illustrates a way to document failure analysis 

when applied to the TMI accident: 

 
Fig. 8 Event flow in accident investigation 

The second stage is abstraction. We accumulated evidence 

from other systems with similar problems. For example, there 

are several types of appliances that share the same redundant 

Delay feature 



 

 

The methodology was developed gradually. An initial set of 

11 patterns was proposed in 2008 in a working group on risk 

management of the Israeli chapter of INCOSE. After going 

through a bunch of failure modes, proposed by the workshop 

participants, we may come up with a simple model of system 

failure such as the one depicted in the following figure: 

 
Fig. 9 Basic situation classification 

Then we established a dedicated working group on system 

resilience, in which we examined various possibility of failure 

modes found in 67 incidences. The outcome of this examination 

was a comprehensive model of system resilience. The model 

was reported in 2015 INCOSE conference (Zonnenshain & 

Harel, 2015)[56]. An updated version of this model is 

demonstrated in the following figure. 

 
Fig. 10 A model of exception management 

Based on this model, we examined a pattern of failure modes 

of activating a maintenance-only feature in functional 

operation, as described above. We looked at common methods 

for protecting from incidences employed in the industry and we 

came up with two approaches: a. disabling the activation of 

maintenance-only features during functional operation, and b. 

warning about such instances. This defines two patterns of 

preventing such mishaps, defined as operational rules. BTW, 

these rules apply also to simple systems, such as home 

appliances. 

The next stage is inter-disciplinary task allocation. It is the 

responsibility of the systems engineer, and/or the safety 

engineer, to select the proper patterns, and it is the 

responsibility of the HCD practitioner to design the warning 

messages, the rebound feedback, and the notifications to the 

operators.  

Finally, we had a validation test of the patterns. Matched the 

patterns with each of the incidences in our sample, and we 

obtained a pie chart representing the power of the test, as 

follows: 

 
Fig. 11 Distribution of the effects of the 2015 model 

For 96% of the incidences we matched at least one pattern 

from our collection. This was in 2015. Today our models are 

much more elaborated. 

Theoretically, we need to quantify the value of this model, 

and to prove that the added-value of applying it is significant. 

Ideally, we may want to compare projects that employed this 

model with project that did not employ it yet. At this stage of 

the theory development this is impossible, because we cannot 

get the data that should be used for a comparative study, simply 

because there is no project yet that tried using the method. Even 

if we had such project, this method should be of low validity, 

because projects do not disclose their values.  

A way to work around this limitation is by scoring made by 

intuition-based evaluation of experts in HSI design. Today, 

there are no experts yet that may evaluate the method, because 

it has not been published yet. The practice about this kind of 

preliminary situation is to get a consensus, similarly to that of 

the UML/SysML.  

Most systems engineering conventions and practices are 

adopted by consensus, based on intuition, commonly called 

“common sense”, not supported by research, for simple reason: 

it is impractical to design experiments on system development, 

in which the scoring is the real value, such that the conclusions 

will be of high face validity. It is impossible to apply proper 

experimental design to such paradigms. 

This is the kind of support that we may expect when 

presenting new theories to practitioners. This discussion applies 

also to the other goal of the study, namely, demonstrating the 

feasibility of learning from rare events. A first step towards 

enabling learning from human errors and unexpected events, 

should be to develop tools for tracing and exploring the system 

activity. 

The prototype of a universal HSI model was in two stages: 

first, defining the GMMs, and then organizing them in a 

structure. 

E. Sampling 

A preliminary version of the GMMs was developed earlier 

by Zonnenshain & Harel (2015)[56]. These GMMs were 



 

 

defined by analysis of 67 incidences, as patterns of typical 

system activity involved in the incidence. The present study 

repeated the analysis of these incidences, based on knowledge 

gained by analysis of additional case studies.  

The study was based on 67 case studies reported elsewhere. 

The case studies are of three categories. Most of them are well-

documented accidents. Others are anecdotal incidences due to 

minor flaws, reported by members of working groups on 

resilience assurance. Few case studies are of recurring, low-cost 

incidences. 

An example of a case study is of the Three Miles Island 

accident, presenting two modes of failure of safety features:  

 The backup pump was disabled during power generation 

 PORV did not close after pressure release, backup 

pressure release was not provided. 

F. A universal model of operation 

Recently, Harel (2021)[23] has proposed a universal model 

of error-free system integration, consisting of seven layers of 

generic mini models (GMMs). The structure definition was 

based on analysis of the relationships between various entities 

that define the system behavior: functions, units, risks, states, 

events, reaction, and resilience. A prototype of a universal HSI 

model presented here consists of seven layers of GMMs as 

illustrated in the following figure:   

 
Fig. 12 Discretizing the system variables 

The universal HSI model highlights the role of situational 

exceptions, as well as the role of scenarios, which should reduce 

operational complexity by information hiding, in support of 

direct mapping from intention to action. 

A structural layer. This layer includes a break down of the 

system elements, including human agents (users, operators, 

artificial agents (processes, tools …) and sub systems. The 

system is a socio-technical, in which the operators are part of 

the system, but the users are external. The subsystems are 

coupled strongly with the operators, and loosely with the users. 

A functional layer. This layer includes descriptions of the 

operational context and features of required to accomplishing 

an operator’s task, intended to maximize the system utility.   

A situational layer. This layer is contains representation of 

the operational situations. The design goal is to notify the 

operators about the system operating in exceptional situations. 

The core of the static model is an abstraction of the system 

situations, with a focus on exceptional situations.  

An activity layer. This layer includes representations of the 

system dynamics. The design goal is to alert the operators about 

transitions from normal to exceptional situations. The core of 

the dynamic model is an abstraction of the system events, with 

a focus on unexpected events. 

A behavioral layer. This layer includes definitions of the 

responses to events in various conditions. The design goal is to 

mitigate the risks of wrong responses to events. The core of the 

behavioral layer is an abstraction of typical system responses to 

exceptional events, with a focus on risk reduction. The focus is 

on assisting the operators in responding to rebound messages, 

in perceiving properly the risks associated with the alarms, and 

in troubleshooting. 
A resilience layer. This layer includes representations of 

safety backups. The design goal is to mitigate the risks of 

operating with backup features missing or unavailable. The core 

of the resilience model is an abstraction of secondary risks due 

to the failure of safety features.  

G. Model development 

The GMMs may be developed gradually as incidences of 

new domains are added to the sample. Each cycle including the 

following activities: 

 Behavior abstraction. This activity is the outcome of the 

incidence analysis. The goal of behavior abstraction is to 

transform domain-specific terms into universal, cross-

domain terms. The abstract version of a specific incidence 

is an incidence model. 

 Model matching. The objective of model matching is to 

identify common failure modes, namely, patterns of 

activities leading to incidences.  

 Protection evaluation. The goal of protection evaluation 

is to detect and evaluate design features that may enhance 

reliability, namely, that may cope with the failure mode. 

Typically, this activity is serendipitous. 

IV. SCENARIO-BASED DESIGN 

Root-cause analysis of operator’s errors indicates that often 

they result from uncoordinated activity. Root-cause analysis of 

coordination failure indicates that often they are due to 

overriding interaction rules. Often, the reason for this is that the 

rules are not stated explicitly in the requirements documents.  

A key design goal is to enforce operating according to the 

rules. Scenario-based design facilitates the coordination 

between the system elements and enables enforcing operation 

by the rules. 

A. HSI scenarios 

HSI scenarios are the HSI view of use cases/ usage scenarios. 

They are used for both design and testing. Operational 

complexity may be reduced by assigning the activity to 

scenarios.  

Scenario-based design is essential to enabling seamless, 

carefree operation. Scenario-based modelling (SBM) is a 

procedure of activity design, in which the system activity is 

expressed in terms of operational scenarios. The objective of 

SBM is to support the design of seamless, robust, coordinated 

interaction by the rules. Trackers should be developed and 



 

 

integrated in systems, to enable evaluation of the effectiveness 

of this methodology. 

B. Scenario models  

A scenario model is a structure used to describe relationships, 

such as hierarchy and transitions between scenarios. It is the 

baseline for informal, normative, human-oriented, task-driven 

interaction design, as well as for disciplined system-oriented 

activity design. Often, it is a bundle of tree structures of 

scenarios associated with various system components.  

The description may be similar to state-charts. Typical top-

level scenarios of the system-level tree structure are generic, 

primary scenarios, such as: installation, initial setting, 

functional operation, initial training, advanced training, 

maintenance, testing, and problem solving. Typically, the 

problem solving scenario may break down to generic sub 

scenarios, such as: under hazard, under alarm, troubleshooting, 

safe-mode operation, resetting, recovery, and reporting. Further 

down, the “under alarm” scenario may be broken down to sub 

scenarios such as: low risk, high risk, and emergency. 

Often, the lower levels are mostly domain specific. For 

example, the functional scenario of a commercial airplane may 

own three primary sub scenarios: takeoff, navigation, and 

landing. Further down the tree, the navigation scenario may 

own two sub-scenarios: manual navigation and automatic 

navigation. The bottom level may comprise project specific 

scenarios. 

Component-level scenarios may be described by simple state 

trees, representing states about availability, reliability, 

activation, performance level, etc. 

Scenario models may serve as a common vocabulary and a 

guide to system development. They simplify the definition of 

human-centered normative behavior, as well as features for 

enabling robust, carefree interaction. 

The definition of scenario models may involve participation 

of customer, operator, and user representatives. 

C. Normative interaction models 

The goal of normative models is to envision how the system 

may be operated in normal scenarios. An interaction model is a 

presentation of the operation of primary tasks in terms of the 

scenario model. The modeling is based on participatory 

exploration by users and operators, by soliciting, analyzing, and 

elaborating stories about optional operational episodes and 

design alternatives.  

The exploration may be employed using light, sketchy, agile 

simulation of the system operation. The simulation may have 

various forms, such as narratives, animation, role-play, board 

games, drama, or computer program. The simulation may 

employ various media, such as text, storyboards, video 

mockups, scripted, emulated, or real prototypes, or virtual 

reality.  

D. Application to UI design 

The root cause for many operator’s errors, such as in using 

consumer products, is due to erroneous activation of feature that 

should be available in different scenarios. For example, a most 

prominent problem in operating home appliance is the 

unintentional activation of setting features. This failure mode is 

the source of several famous accidents, such as the B-17 

accidents due to control substitution in WW II, and the Torrey 

Canyon supertanker crash in 1967. 

The scenario model may serve for designing the screens and 

panels, to prevent erroneous activation of features that do not 

comply with the active scenario.  

E. Model realization  

Coordination failure is often due to scenario ambiguity, in 

which different system elements assume different scenarios. 

For example, the friendly fire accident in Afghanistan (2001) is 

due to inconsistent assumptions about the operational scenario. 

Also, in other friendly fire accidents the fire support unit 

assumed a wrong phase of the fire plan. In order to enforce 

inter-element coordination, the design should include 

declaration and realization of the active scenario, to which all 

the relevant system elements should refer. 

F. Situational models 

A situational model is an expression of the system situation 

in the various scenarios. The system situation may be defined 

in terms of the states of system elements, such as units, agents, 

components, variables, procedures, and interaction options. In 

a situational model these are associated with scenarios. We may 

refer to these situations as the situational scope of the scenario.  

A simple illustration of a situational model is an elementary 

system containing a device that may be On or Off, and a switch 

with two states, used to control the device. The functional 

scenario of the situational model may comprises two sub 

scenarios of normal operation: 

 Operative: both the device and the switch are On 

 Idle: both the device and the switch are Off. 

Another example, illustrating the need for situational 

modelling, is demonstrated by the accident involved in 

operating Therac 25 radiotherapy equipment, which was 

operated in two normal functional scenarios: 

 X-ray testing: obtained by high current, moderated 

electron beam 

 E-beam treatment: obtained by low current, full 

electron beam 

The accident was due to operating in an exceptional situation, 

of high current, full electron beam. 

Other combinations of the device and switch states are out of 

the scope of the functional scenario, and are regarded as 

exceptional. The Torrey Canyon supertanker loss of control 

accident (LOCA) demonstrates the need to impose operation 

based on situational models. In this supertanker, the navigation 

control lever had three positions: manual, automated, and 

special position, disconnecting the rudder from the wheel. The 

special position was intended for use in maintenance only. The 

LOCA resulted from accidental selecting the special position 

while on board. 

Continuous variables may be associated with scenarios by 

their distribution functions. For example, the available disk 

space of a computer may be either normal or critical. 

Accordingly, the situational model of the computer disk space 



 

 

may own two scenarios. 

Thresholds of any continuous variable, such as container 

temperature, may define various performance scenarios, such 

as normal, low risk, and high risk. The Bhopal disaster 

demonstrates the need to impose operation based on situational 

models of continuous variables. 

Continuous variables may also represent scenarios about 

external, contextual, or environmental situations, such as 

ambient humidity, as well as about time measurements of 

repeating activities. 

G. Situational rules  

Situational models enable structuring a framework of 

operational rules. According the principles of cybernetics, 

adopted for the STAMP paradigm, systems should operate 

according to rules. Many incidences may be attributed to 

ambiguous, implicit operational rule. For example, the rules 

defining the properness of the operation of the elementary 

system are derived from the situational models of the Operative 

and Idle scenarios. If these rules are implicit, then the system 

might not be detect exceptional situations, such as when the 

switch is Off and the device is On.  

Situational rules may consist of conditions and reaction. The 

conditions may be expressed as boolean expressions of states. 

The reaction may be preventive, by enforce a proper operation, 

or defensive, for example, by rebounding or notifying the 

operators about the rule violation. The reaction part may reflect 

our prediction of the costs of the reaction options.  

Situational rules are attributes of scenarios. Examples of 

situational rules are: 

 In functional computer operation, when the available 

disk space is critically low, the system should advice 

the operator to clean it. 

 In the production of dangerous materials, when the 

container temperature is higher than a safety threshold, 

the system should notify the operators and enforce 

safe-mode operation. 

Examples of generic rules: 

 When in a functional scenario, risky features should be 

disabled. The need for imposing this rule is 

demonstrated by the Torrey Canyon and the 

Afghanistan friendly fire accident, and many other. 

 During the operation of safety-critical scenarios, 

safety backup features should always be available and 

enabled. The TMI accident (1979) demonstrates the 

risks of erroneous disabling of the backup pump. 

Typically, the definition of situational rules is in the scope of 

systems engineering. The validation of the situational rules may 

be based on faking exceptional situations, and evaluating the 

HSI reaction to the faked situations. 

H. Rule based exceptional handling 

A situation is regarded as exceptional if it does not comply 

with the rules applicable to the active scenario. The best design 

strategy to enforce compliance with the rules is by disabling or 

avoiding exceptional situations. Method for avoiding 

exceptions include rebounding from errors, or providing the 

operator with a forecast of the effect of optional events. 

Exception handling is required when we cannot prevent the 

exception, in cases when the exception is due to an external 

hazard, a hardware fault, a power failure, or a communication 

interrupt, or a design or implementation mistake. The design 

should provide means to accommodate them, by notifying the 

operators about operating in high-risk situations, by prompting 

the operators to take actions, and by guiding them in the 

recovery procedure. 

I. Unexpected situations 

The situational model includes only part of the situations, 

those included in the situation scope of the scenarios. Most of 

the situations are not included in the scope of any of the 

scenarios. For example, in the elementary system describe 

earlier, only two of the four combinations are expected. 

Similarly, in the Therac 25 example, only two of the four 

combinations of current- electron beam are expected. In 

hindsight we know that the Therac 25 accidents are due to 

operating the system in a mixed mode of high current and full 

electron beam, which is not in the situational scope of X-ray 

testing scenario, nor of the E-beam treatment scenario. These 

situation are unexpected, and their root may be in mistakes in 

the definition of the situational rules, or in bugs. 

The challenge is of handling unexpected situations: the 

system design should prevent them, and notify the operators 

about operating in such situations. Special safe-mode 

procedures may be designed to handle them.  

J. Activity models 

The system activity may be defined in terms of the system 

reaction to events. Typically, the reaction depends on the 

operational conditions, which are defined by the system 

situation and by external conditions. An activity model is a 

description of the activities constrained by scenarios. It may be 

expressed in terms of activity rules.  

K. Activity rules 

The activity rules define the reaction to events in terms of 

scenarios. An activity rule may describe normal interaction, or 

ways to prevent diversion from normal to exceptional situation. 

Interaction rules define optional responses to an event, in a 

particular situation, depending on the scenario. Examples of 

preventive rules are. 

 Safety features should not be disabled while in high-

risk scenario. 

 Transition to a functional scenario should be avoided 

when any of the safety features is disabled. 

Typically, the definition of activity rules is in the scope of 

systems engineering.  

L. Protective rules 

Protective rules may be derived from situational rules by 

examination of the possible transitions from normal situations 

to exceptional situations.  

For example, examine the situational rule about the 

availability of safety features during safety-critical functional 

scenarios. Depending on the costs of automated suspension of 

the functional operation, the system may either suspend the 



 

 

functional operation, or notify the operators about the risks of 

operating without the safety feature. Protective rules derived 

from this situational rule are:  

 The system should prevent or warn the operators about 

disabling the safety feature while in a functional 

scenario 

 The system should prevent scenario transition from 

maintenance to functional when the safety feature is 

disabled. 

The validation of the protection rules may be based on faking 

exceptional situations or events. 

M. Activity protocols 

The activity rules may be formalized in terms of protocols of 

event-response. The responses to events may include changing 

of the operational scenario. The activity model may include 

special protocols for handling the operator’s control. For 

example, a protocol for responding to disabling a safety feature 

in a functional scenario may consist of two steps: 

1. Rebounding: prompting the operators to regret or to 

confirm their intention  

2. Switching to a safe scenario, such as maintenance, 

idle, safe-mode or shutting down. 

N. Transition synchronization 

Following a request to change the active scenario, the system 

needs to activate the situational rules that apply to the new 

scenario. By definition, changing a situational rule of a scenario 

involves changing of a state of at least one system element. 

Changing the state of a system element may be time consuming. 

The Therac 25 accident demonstrates a challenge of responding 

gracefully to synchronization delay, and to suspending the 

operation until the scenario transition is complete. 

Transient scenarios define the system response to events 

during the transition. During a transient scenario, the system 

may operate in a special sync mode. The design should include 

special features for enforcing graceful synchronization, such as 

disabling risky activity, notifying the operators while in 

synchronization, warning the operators in case of failure, and 

handling the recovery. 

While in a transient scenario, the system may operate in a 

special transition mode. The operation in the transition mode 

may be initially automated, by default. If applicable, the 

operators may have an option to override the automated 

behavior.  

O. Transition models 

A transition model is a description of the procedure for 

changing the situational rules during the scenario transition. 

Transition models may describe ways to capture and notify on 

exceptions, and escape procedures, in response to exceptions.  

The transition model may include a special transient 

scenario, representing the operation until the new scenario is 

synchronized, and a special escape scenario, representing the 

case of transition failure. The operators need to know about 

such cases, and the system should provide an exception warning 

when the situation does not comply with the new constraints. 

The transition model may include special features for enforcing 

graceful delay or failure, such as disabling risky activity and 

notifying the operators while in the transient scenario.  

A generic synchronization model may be expressed using a 

standard protocol, including:  

 A transition request, pointing at the target scenario, 

and setting a sync time out limit 

 Activating processes aimed at applying the rules 

associated with the target scenario 

 Waiting until the situation complies with the rules of 

the target scenario. While waiting, the system should 

indicate that the system is in a transient scenario 

 After complying with the rules of the target scenario, 

it becomes the active scenario 

 In case of reaching the timeout limit, provide a 

warning message and initiate a recovery procedure.  

P. Transient timeout adjustment 

An initial value of the sync timeout may be defined in the 

transition specification, but this value might not fit all 

circumstance. The design may provide means for measuring the 

actual transition time, and for adjusting the timeout for each of 

the transitions, based on statistics of the measurements. The 

adjustment may be automated or manual. 

Q. Recovery models 

A generic recovery model may be expressed using a standard 

protocol, including:  

 Notifying the operators about the transition failure, 

prompting to recover the situation prior to the 

transition request 

 Notifying the operators about the recovery results 

 Enter a special safe-mode operation. 

V. ENGINEERING 

As discussed by Harel & Zonnenshain (2019)[25] the 

engineering of HSI is based on defining operational rules, 

which define exceptions by exclusion from normal behavior. 

A. HSI statecharts 

SysML offers a simplified version of UML statecharts for 

graphical representation of state transitions. This kind of 

representation is not adequate for modeling the interaction 

between state machines. The problem is that events designed 

using SysML statecharts are error-prone. The HSI version of 

statecharts supports describing various attributes of mutual 

effects between state machines, as well as enforcing error-free 

state transitions.  

B. Evaluation 

For evaluating the model, we may employ the Layer Of 

Protection Analysis (LOPA) technique, commonly used in the 

process industry for assessing the protection needs. The 

evaluation is based on testing the effects of protection layers 

and calculating the potential risks (Baybutt, 2002)[4]. 

C. Infrastructure 

Utility-critical systems should incorporate means, including 

sensors, trackers, recorders, and analyzers, for informing the 



 

 

operators and the developers about the time they could save. 

The infrastructure for model-based HSI may include special 

means intended to save the time wasted in handling exceptional 

situations. The means to avoid exceptional situations and to 

support exception management may be integrated into the 

model used to design the HSI. For example, they may include 

model interpreters that enable customizing the model transition 

to software units. 

D. Data analytics 

Tracking tools enable capturing and measuring the costs of 

daily, low-cost events (Harel, 1999)[17]. Harel et al. (2008)[24] 

demonstrated a way to apply data analytics in automated 

usability testing, and Harel (2009)[19] demonstrated that data 

analytics may be used to identify problem indicators. Universal 

tracking is crucial also for enabling learning from rare events.  

E. Digital twins 

A digital twin is an executable virtual model of a physical 

thing or system (Wright & Davidson, 2020)[55]. The concept 

of digital twins is based on the concept of virtual prototyping, 

dated in the 80s, in which a model was used to replace system 

units by emulation. This features enables early integration, by 

using virtual units instead of the real components that are not 

ready yet for the integration. This feature was recently adopted 

for systems engineering in the form of digital twins.  

Digital twins enable to control the system operation 

according to the STAMP paradigm: the post-deployment 

emulation enables detection of incidences by comparing the 

output of the emulated unit with that of the real unit, as depicted 

in the following figure: 

 
Fig. 13 Digital twins used for incidence detection 

Digital twins may be integrated in MBHSI, for seamless 

change validation according to the following figure: 

  
Fig. 14 The role of digital twins in model based HSI 

F. Customizing 

The seven-layer models are generic, applicable to various 

domains and industries. To adapt it to a particular project these 

models need customization. The customization process is 

according to the order above, as the definition of each model 

depends on that of the previous one. 

G. Simulation 

The transition from the customized model to a prototype 

and/or digital twin should be automated. The automation may 

be based on simulation of the orchestrated version of the 

system, using standard software packages that process the 

custom parameters. 

H. Model development 

Models enable saving development costs by enforcing 

seamless adaptation to design changes. The models should be 

defined iteratively, each cycle is followed by evaluation. 

Typically, the evaluation ends up with a list of requirements for 

design changes, intended to reduce the operational complexity. 

The development might end when it is obvious that all known 

significant risks are removed. Criteria form ending the 

development may be based on the Service Integrity Level (SIL) 

evaluation method commonly applied in the process industry 

(Redmill, 2000)[40]. 

I. Testability 

Testing rare events is challenging. To enable testing 

exceptions the system should incorporate a special tester unit 

that fakes various kinds of faults, in various conditions, that the 

testing team can customize. A special scenario should be 

defined, which is part of the operational conditions. 

J. Adjustability 

The setting of the alarm and safety thresholds of the various 

risk indicators is a delicate design goal, aiming to balance 

properly the rate of nuisance of the alarms. A special utility may 

enable inform the system administrators about the margins of 

alarms and safe-mode operation. 

VI. CONCLUSIONS 

Primary barriers to maximizing the utility are limitations of 

operating in exceptional situations, typically attributed to 

errors, hampering the system’s usability. The conclusions from 

this study are that we can learn from case studies drawn from 

various domains and industries, and formulate a universal HSI 

model. This model may consist of layers of GMMs, expressed 

in terms of rules for system definition. This model is still 

conceptual. It is should be verified and validated in future 

studies. In addition, this model may be engineered, by 

developing guidelines for implementing the model in real 

protects.  

Principles of HSI reliability may be phrased as scenario-

based rules and protocols for risk detection, recognition, and 

identification. A challenge for the 4th industrial revolution is to 

develop a methodology for cross-industry model-based 

integration design. This study demonstrates that we can define 

universal rules, suggesting that this goal is achievable. These 



 

 

rules may be validated in future studies, and evolve to 

engineering guidelines. The measures proposed for the rule 

validation may be obtained by statistics of measurements of the 

system performance. Validation of the rules may be conducted 

by analysis of the activity obtained by trackers of the system 

performance, using statistical metrics, followed by traditional 

usability testing in the corresponding scenarios. The article calls 

to develop and integrate tools for recording and analysis of the 

system activity during the operation, required to implement and 

validate the model. 

Finally, the article explores various protection patterns, but 

certainly not for all possible design challenges. It may be 

interesting to explore operational rules for various operational 

scenarios. 
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