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Three Miles Island (TMI) -1979 

The case study is of the backup pump which was not available. 

The TMI accident was a partial meltdown of a reactor of the Three Mile Island nuclear power station in 

Pennsylvania. The trigger for the exceptional condition was cutting off the backup pump, and 

subsequently, forgetting to reopen it. The valve was closed but nobody noticed it. The impact on the 

industry of nuclear power stations was dramatically slowing down of the industry for years.   

The second trigger, two days later, was a contamination of the line control while trying to release a stuck 

valve. Due to the contamination, the control of the main loop failed, and the primary pump stopped 

working. The system was designed such that the backup pumps automatically turn on in case of such 

events.  However, the pump was not available when needed, as it was disconnected from the system.  

At this stage, the Pressure Operated Release Valve (PORV) was automatically open to release the 

pressure, but due to a malfunction, it did not close back. The operators became confused because the 

indication of the PORV state was misleading. 

Anatomy of operational failure 

Traditional root-cause analysis (RCA) 

The failure in the case study was that the service was not available when it was needed in emergency: 

the controller was the production control unit, and the service was the operation of the backup pump. 

The failure was in the pump readiness for the emergency. 

The case study suggests the need for a scenario-based availability plan. In proactive failure RCA we 

define models based on the analysis, intended for availability assurance by design. The impact of the 

models is demonstrated and evaluated by hypothetical application to the case study. 

Exceptions 

In the case study, the failure was due to crossing the safety boundaries. The safety boundaries define the 

transition to exceptional situations: in the TMI accident, the exception was disabled backup pump during 

energy production. 
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The problem in the case study was that the exceptions were not defined explicitly, and the performance 

boundaries were fuzzy. 

Invisible risks 

When the exceptions are fuzzy, it is possible to divert to the exceptions, and such diversion is unnoticed. 

In most of the systems, most of the failures are unknown, because neither the designers nor the 

customers can notice them, and therefore they are not aware of them. Only when the costs are high do 

we bother to look for ways to prevent repeating the diversion. Only a small part of the diversions is 

noticed, namely, when their costs are noticeable.  

In case of an incident, when the designers notice a failure, they often attribute it to an operator’s error. 

They are obliged to pay attention to a failure only in case of an accident, namely, when the costs are 

extremely high.  

We should assume that the number of risky situations is huge, because we can see only those that are 

costly, and because we do not bother to detect and investigate low-cost events.  

Operational errors 

Analysis of many accidents has shown that the term human error is just a name for operational failure 

that the human operator was not able to prevent (cf. Dekker, 2007). In the case study, the disabling of 

the backup pump was regarded as a human error, instead of a design mistake, of lack of warning about 

the slip. 

To eliminate human errors, we need to understand how the operation fails.  The challenge is to get 

enough evidence to understand how errors are generated.  

Error proofing 

To be on the safe side, we should protect the system from all risky situations, because we cannot tell 

when one of them might be disastrous.  Practically, this implies that error proofing ought to be a key 

topic of systems engineering.   

Modeling the system integration 

The challenge of proactive RCA is to elicit common attributes of the case study to obtain a model of 

failure which applies to other industries. 

In the case study, the system had two components: a human controller and a technological subsystem. In 

each of them, the controller could not activate a critical service, which was required in emergency.  

The conclusions from the reactive failure RCA may be used proactively, to obtain a model of system 

failure, and subsequently, to obtain a methodology for ensuring feature availability. In the proactive 

version of failure RCA, we look for the enablers of the problematic sources, and for the ways of the 

situation diversion from normal to exceptional. 



A model for describing systems such as in the case study may comprise at least two layers. In the context 

of availability challenges, the top layer comprises a human supervisor and a technological subsystem, 

and the technological subsystem comprises a controller and services. 

The top layer 

The top layer comprises concrete entities and data flowing between the entities. 

The top-level entities include a human supervisor and a technological subsystem. In the case study, the 

technological subsystem is the power generation subsystem. The top-level data includes functions 

applicable to the supervisor, scenarios defined by the supervisor, and tasks defined by the supervisor, 

applicable to the technological subsystem.  

The supervisor function in the case study is the TMI production control. The scenarios defined by the 

supervisors are the normal production vs. maintenance. The subsystem tasks applicable for the case 

study are direct reflections of the supervisor functions.  

This top-level model is typical of many case studies.  

The technological subsystem  

The technological subsystem comprises entities, processes, situations, and activities. In the case study 

above, the entities include a controller and a server. The controller is a production unit; the server is a 

backup pump. 

Rule-driven coordination 

A rule-based model describing proper operation may help with this task and may facilitate the 

implementation. In normal situations the controller and the service should be coordinated, according to 

safety rules. The rules are obtained in hindsight, based on the observation obtained in reactive RCA. For 

example, a rule defining hypothetical safe operation applicable to the case study could be: 

Rule: in normal energy production the backup pump should be available 

To enforce the service availability when in need, the design should constrain the situations, to comply 

with the scenario. 

Operational risks are associated with diversion from normal to exceptional situations. Exceptional 

situations are situations which are not supported by the design of normal operation. 

Diversions 

In normal operation, the system units are coordinated. A diversion from a normal situation to 

exceptional is called a coordination slip. An availability diversion is a change from coordinated to 

uncoordinated situation between a controller and a service.  



A coordination slip may occur by a trigger, or through a lapse or drift. A trigger is just a name for an 

action diverting the operational situation from normal to exceptional. A trigger may result from a human 

slip, from a hardware failure, or from a software bug.  In the case study, the accident may be attributed 

to coordination slips due to triggers: disabling a critical feature, by the human operators  

The challenges are to prevent diversions, and to detect the diversion and to notify about it to the 

supervisor at the time it is generated.  

Operational risks 

Diversions may be classified as either expected or unexpected. Initially, before the accident, they are 

unexpected. In hindsight, they are expected and predictable. The challenge is to develop a model of 

predictable diversions and a model of unexpected diversions. 

The system behavior depends on the context of the activity. For example, a control, such as a button, 

may activate one feature or another, depending on the state of a selector. In normal operation, we need 

to constrain the activity to suit the desired behavior. Operational risks are often associated with operator 

errors due to improper constraining:  

• Over constraining might result in inability to perform a desired function (Alpha errors). The effect 

is LOC  

• Sub constraining might enable unintentional activation of functions intended to be used in 

specific situations, such as at setup or in maintenance (Beta errors). The effect is unpredictable. 

Both types of errors should be attributed to design mistakes. In the case study, the first slip was due to 

sub constraining (Beta error), and the effect was diversion to operating in over constrained conditions 

(Alpha error), in which a safety feature was not available. The case study demonstrates the effect of 

wrong constraint: the activity was sub constrained, enabling the cutting of the backup pump for 

maintenance. 

The engineering challenges about LOC accidents is to enforce the service availability by design. The case 

study demonstrates the need to prevent any mistakes in constraining feature availability. Such mistakes 

may be detected in validation testing.  

Enforcing feature availability 

Principles  

The design challenge is to enforce the availability of critical features. This is a special case of a more 

general problem of controller service coordination: the service mode should comply with the controller 

scenario. A feature which is critical for the operation of a unit in a certain scenario must be coordinated 

with that unit, in that scenario.  

The model of availability failure may be used as a baseline for a methodology for availability assurance. 

The case study may demonstrate hypothetical realization of the protection principles and methods, 

which may be applied to systems like those in the case study.  



The desired response to the trigger does not necessarily be the same for the two sources. It may depend 

on urgency in resuming coordinated activity. The scenario is superior to the service mode because it 

reflects the task imposed by the monitor. In a scenario-based design, the service mode should adapt to 

the scenario. In the case study, if the scenario has changed, the controller may activate the service 

automatically. If the service operators disabled it, the service should notify the controller about the 

change in the availability.  

Diversion control 

Availability diversion may result from a trigger originated by the controller or by the service. The 

challenge is to detect the trigger and to notify about it to the supervisor.  A method used to design the 

coordination between processes is based on the principle of multiple layer defense, as demonstrated 

using the Swiss Cheese illustration. The layers of availability assurance are:  

1. Preventing coordination slips 

2. Exploratory decision making  

3. Alerting on predictable coordination slips 

4. Availability awareness 

5. Rebounding from slips 

6. Warning on unexpected coordination slips 

7. Recovery 

8. Escalation preview 

9. Sustaining the slip. 

Preventing coordination slips 

Availability diversion may result from a trigger originated by the controller or by the service. A trigger is 

an action by the controller or the service, that eventually results in a diversion. The safest way to 

manage risks is to avoid them. To manage the risks of coordination slips, we may ensure that the system 

is coordinated. To prevent a diversion, we need to prevent that trigger. The design challenge is to direct 

the impact of the action such that it does not result in a trigger. We may constrain the operation to 

comply with coordination rules. Hypothetical examples from the case study: on changing from 

maintenance to production, the design should enforce pump availability. 

Alerting on predictable coordination slips 

Not all coordination slips may be avoided. For example, according to the human factors version of 

Murphy’s Law, if the system enables human errors, then the operators are likely to err. To detect 

expected coordination slips, we need to include special probes in the activity design. The probes may be 

designed based on a model of the system coordination. Examples of hypothetical detection of expected 

slips from the case study: on disabling the backup pump, the control system could warn the operators 

about the risks of operating with the backup pump disabled. 

The coordination may be validated continuously; however, it is more practical if it is validated only in an 

event of change of the controller scenario or of the service availability.  



Availability awareness 

It might not be sufficient that the system detects and warns about the hazard. Any delay in detecting 

constraint violation might enable an accident. The discipline for assuring that the operators are aware of 

the hazard is HCD. The case study demonstrates the costs of detection delay: the operators were not 

aware of the backup pump being disabled for two days before the accident. 

The design challenge is to notify about a diversion at the time it is generated. 

Rebounding from slips 

Not all expected coordination slips can possibly be prevented. Rebounding from exceptional situations 

means automated or manual reverting back to the recent normal situation.  This feature may apply to 

human-originated slips, namely, human errors. Examples from the case study: on disabling the backup 

pump while in production, the system control may enforce reverting to the state of enabled backup 

pump. 

Warning on unexpected coordination slips 

Not all coordination slips are expected. Diversions may be prevented only if they are predictable. When 

they are not predictable, the system may still detect coordination slips, and notify the operators about 

them. Hypothetical example from the case study: on unexpected disability the pump, notify the 

operators and the controller about the risky situation. 

Recovery 

Occasionally, the operators might fail to rebound from the exceptional situation. In case of a 

coordination failure both the controller and the service may react, depending on the source.  

The reaction may be spontaneous recovery, by rebounding to the original coordinated state, or by 

enforcing a corrective change in the partner.  

The recovery methods are by applying troubleshooting and recovery procedures, and by collaboration 

between the operators and the system, while in safe-mode operation. 

Escalation preview 

When operation in exceptional situations, it is important to notify the operators about it. In response the 

operators need to look for ways to recover from the exceptions. The time frame for recovery may be 

limited, and knowledge of the time frame is important for deciding well about the recovery procedure. 

Sustaining the slip 

Sometimes, the system design does not include sufficient means for troubleshooting, and the 

coordination practically fails. For these cases, the system should apply a last protection layer, which is by 

employing resilience procedures, such as safe-mode operation 



Lessons 

The challenge is that safety-critical features should be available when they are needed in case of hazard. 

The conclusion is that it is possible to enforce the availability of safety-critical features. The design should 

protect from disconnecting safety critical features and should provide warning when these features are 

disconnected. 
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