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Abstract 

The article suggests a model of controller-server interaction for describing CFS. The design goal proposed 

is to eliminate the risks of friendly fire. Based on three case studies, the conclusion is that the key to 

preventing accidents is in managing the risks of operating in exceptional situations, in which the server is 

not coordinated with the controller. A protocol of scenario-based interaction may be employed to ensure 

that the interaction is always coordinated.   

Objective 

Worse than losing a battle are accidents of hitting your own allies, due to identification friend foe (IFF) 

mistakes. Particularly painful cases are Friendly Fire Accidents (FFA), namely, mistakes in which a 

supporting unit hits the front unit instead of the enemy. Typically, such accidents are commonly attributed 

to decision errors made by the human operators. The goal is to propose a model, comprising principles 

and a procedure for detecting and reporting on coordination problems.  

Means for IFF were developed for air force and navy units. These means may apply also to CFS but are not 

applicable to ground forces. The article presents a model of CFS errors, and a framework for eliminating 

these errors by design.   

Combat fire support (CFS)   

A basic model describing CFS comprises an interaction between a controller and a servicer. The controller 

is a combat unit in need for fire support, and the server is another combat unit assisting the controller, 

providing the combat fire, shooting at the enemy.  

During a CFS session, the server situation needs to adapt to the controller. A situation in which the server 

complies with the controller may be regarded as consistent with respect to the controller.  

Case studies 

The model was obtained by analysis of investigation reports of three published CFS accidents. Two of the 

accidents were in the Tze’elim Training base located in Israel (Harel, 2024 A,B), and the third was near 

Kandahar, in Afghanistan (Harel, 2024 C). 
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Tze’elim A accident - 1990 

The Tze’elim Training base is located in Israel. The accident occurred while a reserve unit was conducting 

an exercise involving the capture of an enemy position. An artillery shell exploded near a group of soldiers 

on a training exercise, killing five and wounding ten. The accident resulted from a wrong command by the 

artillery officer at the front unit, applying the command code of the first stage of the plan, also to the 

second stage, after the front unit had already settled at the target position.  

The analysis indicated that the safety measures were not sufficient, and that the accident could have been 

prevented had the exercise managers controlled the activity according to the plan. The conclusion was 

that the safety rules should be revised, but the safety authorities hesitated about the way they should 

implement the revision. 

Tze’elim B accident – 1992 

In retaliation for Iraqi Scud missile attacks during the Gulf War, The IDF's General Staff Reconnaissance Unit 

was preparing for the assassination of Saddam Hussein, hoping to eliminate the threat of potential nuclear, 

chemical, and biological weapons, as well as the missile capability to hit Israel, and the fear that Hussein 

would continue trying to develop such capabilities.  

The preparation included a simulation of an ambush for Saddam Hussein by a guided missile. The plan had 

two parts: first, a dry run, then after setting target images, shooting with live missiles. Due to confusion at 

the fire support position, a live missile was shot while the exercise administrators were still setting the 

target images. Five soldiers were killed in this accident. 

Again, the analysis indicated that the accident could have been prevented, had the exercise managers 

controlled the activity according to the plan. The conclusion was that the safety authorities should 

implement the revision of the safety rules. 

Kandahar accident - 2001 

Three American soldiers and five Afghans were killed when special forces troops called in an airstrike 

meant to hit Taliban positions on Dec. 5, 2001. Instead, a B-52 bomber dropped a 2,000-pound satellite-

guided bomb on a battalion command post occupied by the American forces and Afghan allies. Pentagon 

officials later said the bomb went astray, because the Air Force combat controller who set the coordinates 

for the attack had changed the batteries on his GPS receiver, which reset the coordinates back to the user’s 

own location rather than the Taliban position. The officials attributed the accident to training problems.  

Accident root-cause analysis (RCA) 

Accident proofing should be based on RCA. Safety in the CFS relies on situational consistency. The 

operation might fail when the situation does not comply with the controller’s needs. In this case, the 

supporting unit was shooting at the front unit, instead of the enemy. 

 



• The Tze’elim A accident: In this case, the supporting unit was shooting at TGT1, while the 

controller’s need was to shoot at TGT2. 

• The Tze’elim B accident: In this case, the supporting unit was shooting live ammunition, while the 

controller’s need was to shoot dummy ammunition. 

• The Kandahar accident: In this case, the primary scenarios were those associated with the GPS 

operation modes: target acquisition vs. navigation. 

Operational failure 

Traditional RCA is reactive, namely, specific to an incident. In reactive RCA we look for a single main 

important cause of the specific accident. The conclusions are often circumstantial, justified by quoting 

Murphy’s Law.  

Typically, people attribute accidents to operators’ errors (Dekker, 2007).   

• The Tze’elim A accident is commonly attributed to an operator’s slip  

• The Tze’elim B accident is commonly attributed to an operator’s confusion  

• The Kandahar accident may be attributed to unfortunate battery failure. 

To eliminate failure, we need to understand how it is developed from an exception. In these cases, the 

failures were attributed to coincidence, but they should have been regarded as a design mistake, namely, 

lack of warning about the unexpected exception. The challenge is to get enough evidence to understand 

how exceptions are generated.  

Proactive RCA 

Professional RCA should be proactive. A proactive version of Murphy’s Law is that failure results from 

design mistakes, and therefore exceptions should be expected and prevented by design. According to the 

US National Library of Medicine (NLM), RCA is “aimed at discovering the causes of close calls and adverse 

events for the purpose of identifying preventative measures” (Charles et al., 2016).   

In the case studies, the challenge was to detect and block the event sequence that ended up in the 

accident.  

RCA conclusions 

The accidents of the case studies are typical of systems that do not maintain the primary scenario variable. 

In such cases, the scenarios are fuzzy, and consequently the server might assume a wrong scenario. If the 

scenario is fuzzy, then the system design may not include means for detecting problematic situations. This 

is typical of CFS design in which the operational scenario is not defined explicitly.  

• In the Tze’elim A and B accidents, the exercise stages were defined clearly, but the system was not 

automated, and therefore the stages were not integrated in the exercise control. 

• In the Kandahar accident, The GPS control was not integrated in the system, and therefore the 

GPS modes were not integrated in the CFS control. 



Modeling the fire support 

The coordination model is based on the cybernetics model of feedback control loops, as described in the 

STAMP paradigm, and developed in the STPA methodology (Leveson, 2004). The engineering challenges 

of CFS are to obtain and employ models of normal operation and of operational failure.  

CFS may be described in terms of a controller server interaction, in which the server is a fire support unit, 

and the controller is the front unit that needs the fire support. Normal interaction is task driven, and 

subject to proper coordination between the controller and the server. The controller issues commands or 

requests to the server, and the server provides situation and activity reports.  

Operational risks and hazards 

Operational risks may be classified as either expected or unexpected. The risks of Friendly Fire Accidents 

(FFA) are well understood, and they may be regarded as expected. However, the ways hazards are 

generated might be unexpected. Expected hazards are associated with triggers, situations, and activity.  

Triggers 

Triggers may be classified according to their actuators: human or technological. Human operators are error 

prone. A human factors version of Murphy’s Law is: if the design enables the operators to fail, eventually 

they will. Technological triggers are much rarer because they are captured during the system verification 

process. Human triggers may be either unintentional, due to confusion or due to the ‘irony of automation’.  

• The Tze’elim A accident: In this case, the trigger was a controller’s slip, in the command code 

• The Tze’elim B accident: In this case, the trigger was a server’s confusion about the stage 

• The Kandahar accident: In this case, the trigger was power reset at the server. 

The common characteristic of the different types of triggers of these accidents is that they changed the 

situation from normal to exceptional. 

Limitations of human control 

Human errors are challenging, because humans are included in the system as flexible operators in 

emergencies, to enable coping with exceptional situations unseen at design time. However, they can rarely 

do it properly, due to their virtue of training-based reaction. According to the “irony of operation”, in 

emergency, the operators are likely to react as trained in normal operation, instead as by calm, logical 

decision making. For example, if the system design includes a frequently used prompting to confirm risky 

operation, the human operator is likely to confirm the prompt automatically, before considering its 

applicability, as expected by the designers. 

Situational risks 

The situational risks may be classified as external or internal:  



• Externally, normal operation must be in the performance envelope. External risks are due to 

approaching the performance boundaries, defined as limits of performance variables. In the 

context of CFS, the performance envelope consists of the visibility and safety zone, ammunition 

limitations and restrictions, etc.  

• Internally, the situations must be coordinated. In the context of fire support, the server situation 

should comply with the scenario, as perceived in the controller. Internal risks are due to diversion 

from the situations defined as normal.  

The accidents in the case studies are due to failure to maintain situation compliance following a change of 

the operational scenario. This kind of accident is typical of systems that do not maintain the primary 

scenario variable. In such cases, the scenarios are fuzzy, and consequently different system components 

might assume different scenarios. In such cases, the situation is not consistent.  

Situational complexity 

The number of possible situations grows exponentially with the number of state machines employed in 

the system operation; therefore, careless design of the situation coordination is error prone, as 

demonstrated in the case studies. Special coordination techniques, such as scenario-based situation 

assignment, must be employed to maintain situation coordination. 

In normal operation, the coordination is scenario driven. The controller and the server are coordinated by 

the operational scenario. This model assumes that both the controller and the server assume the same 

scenario, implying that the scenario is a concrete system entity that the system should handle.  

Activity risks 

Activity risks are about mode errors, namely, failures due to operating while the mode (operational state) 

of a system unit does not comply with the operational scenario. Almost all system units, and almost all 

system features, are prone to activity risks, due to mistakes in constraining the system situation (cf Harel, 

2024).  

Mode errors may be due to enabling operation in exceptional or in fuzzy situations. In such situations, the 

activity intended for a particular scenario might be risky in other scenarios. 

The problem of mode errors may further be extended to describe accidents due to operating in transient 

situations. In the context of FFA, the extension may refer to the case of a front unit controlling two services, 

one which is a supporting unit, and the other is an intelligence unit. 

Risks of under-constrained activity 

In normal design, almost all nontrivial system units are prone to situational errors, in terms of accessibility 

or availability. For example, if a critical feature, such as launching a shell or a missile, is enabled or 

accessible in the wrong scenario, then the operation might fail due to a design mistake of under-

constrained activity (beta type).  

• The Tze’elim A accident is due to under constraining the human operator at the front unit  



• The Tze’elim B accident is due to under constraining the human operator at the supporting unit  

• The Kandahar accident is due to lack of constraints about the GPS modes.  

Protection methods 

The framework  

To design the coordination between the front unit and the supporting unit we may apply the principle of 

multiple layer defense, as demonstrated using the Swiss Cheese illustration (Reason, 1997). In the context 

of CFS, we may apply following approaches: 

1. Preventive: scenario-driven mode setting,  

2. Proactive: impact validation, and  

3. Reactive: compliance verification.  

Preventive: scenario-driven mode setting 

In normal operation, the situation is scenario driven. The controller and the server are coordinated by the 

operational scenario. Rather than alarming about diverting from the plan, the operation could be enforced 

to comply with the plan, by setting the operational modes according to the scenario. 

Scenarios may be used as situation vectors, namely, pointers to the set of state machines, thus reducing 

the situational complexity from exponential to linear. This model assumes that both the controller and the 

server assume the same scenario, implying that the scenario should be implemented as a concrete system 

entity that the system should handle.  

In hindsight, the case studies demonstrate the need for scenario-driven setting of the service situation.  

(cf. Harel, 2024):  

• In the case of the Tze’elim A accident, the command codes could have been associated uniquely 

with the plan stage, and the command code would have been derived directly from the stage. This 

is possible if the exercise management is computerized. 

• In the case of the Tze’elim B accident, the ammunition type could have been driven directly from 

the exercise stage. In the case of the Kandahar accident, the GPS mode should not have been set 

by default. Rather, the mode could have been set to ‘Target acquisition’ after changing the battery, 

directly from the fire command. 

• In the Kandahar accident, the GPS mode could have been associated uniquely with the operational 

scenario, and the active GPS mode would have been derived directly from the active scenario. This 

is possible if the CFS management is computerized. 

Proactive: impact validation 

In hindsight, the accidents of the case studies could have been prevented had the CFS units followed a 

validation protocol. According to this protocol, the supporting unit should have informed the front unit 



about the intended shooting point and the front unit should have verified that the intended point suited 

the fire needs and provided a warning if it didn’t.   

• The Tze’elim A accident could have been prevented had the supporting unit informed the front 

unit about the intended target coordinates, and the front unit had confirmed that the target 

coordinates suited the fire need. The officer at the front unit could examine the coordinates 

received from the supporting unit and would cancel the fire request. 

• In the Tze’elim B accident, at the time of the accident, the impact suiting the front unit needs was 

dummy ammunition, according to the Dry Run stage, and the impact intended by the supporting 

unit was live ammunition, which could fit the Wet Run stage. Consequently, the front unit would 

cancel the action. 

• In the Kandahar accident, the B-52 bomber could ask the front unit to confirm the coordinates of 

the target point, and the front unit could cancel the fire command.    

Reactive: compliance verification 

In hindsight, the supporting unit could have verified that the command complies with the operative 

scenario. The verification may be automated, if the CFS operation is managed by a computer, which traces 

the activity and detects instances when it does not comply with the scenario.  

• In the case of the Tze’elim A accident, the front unit should have verified that the fire command 

complies with the plan. They could do it, had the exercise management been computerized. 

• In the case of Tze’elim B accident, the computer could detect that the supporting unit is about to 

fire live ammunition, which was not according to the exercise stage, and could alarm about it. 

• In the case of Kandahar accident, the computer could verify that the GPS mode was set to ‘Target 

acquisition’, according to the rules of using the GPS, and alarm when it was set to ‘Navigation’ 

mode. 

The abstract form of this method is that the operation management should be computerized, and the 

computer should trace the execution and alert in case of exception. 

Implementation 

The key to enabling the coordination is defining the constraints in terms of rules. Many rules are generic, 

and customizable. This feature enables reducing the costs of eliminating operational risks. 

Situational rules 

To enable the situation adaptation, the scenario should be defined explicitly, and implemented as a 

primary system variable. Otherwise, different system components might assume different scenarios, and 

the corresponding situations might be different. The scenarios should be defined such that a scenario 

change involves: 

• Enforcing consistent change of the adaptable variables 

• Verification of the consistency of unadaptable variables. 



Enforcing the situational rules 

To enable the situation verification, the system requirement should specify the operational scenarios, the 

system design should manage the scenarios, and the software program should verify that the 

implementation complies with the design.  

The focus of situation verification is on the mode compliance with the scenario according to the rules and 

on disabling the operation when they do not comply with the scenario. The design challenge is to specify 

the rules defining the scenario-mode compliance and the reaction to violation of these rules.  

Activity rules 

Activity may be defined in terms of changes in the system situation. Accordingly, activity rules are about 

situational changes.  

• The activity rule applicable to the Tze’elim A case study is: On change to the stage 2, the system 

should prompt the operators to change to TGT2. 

• The activity rule applicable to the Tze’elim B case study is: On change to wet run (and not earlier), 

the system should prompt the operators to change to live ammunition. 

• The activity rule applicable to the Kandahar case study is: On spontaneous change of the GPS 

mode, the system should alert about the inconsisten situation. 

Error proofing 

To be on the safe side, we should protect the system from all risky situations, because we cannot tell when 

one of them might be disastrous.  Practically, this implies that error proofing ought to be a key topic of 

systems engineering.   

Enforcing situation awareness 

To enforce the operator’s awareness of the rule violation we need to apply two mechanisms: 

• Situational verification: ongoing notification, as long as the situation does not comply with the 

rules 

• Activity verification: an alarm on changing from normal to exceptional situation. 

Conclusions 

Accidents are commonly attributed to human errors. To enable seamless operation, we need to 

understand the sources of incidents, and find ways to eliminate them.  

The article presents a model of normal CFS and of the risks of FFA due to diversion from the normal 

procedures, a lists protection methods, and operational rules that may eliminate these risks.   



Extensions 

The problem of FFA is a special case of the controller service coordination problem. The extended problem 

is of compliance of the server with the scenario, defined by the controller. If the reason for the accident is 

that the server operational mode does not comply with scenario, then we often call it a mode error. Mode 

errors were noticed as key sources for well know accidents such as AF 296, airplane TO/GA , TMI, Torrey 

Canyon, and more.  

References 

Ryan Charles, Brandon Hood, Joseph M. Derosier, John W. Gosbee, Ying Li, Michelle S. Caird, J. Sybil 

Biermann, and Mark E. Hake 2016. How to perform a root cause analysis for workup and future 

prevention of medical errors: a review. Patient Saf Surg. 2016; 10: 20. doi: 10.1186/s13037-016-0107-8 

Dekker, S 2007. Just Culture: Balancing Justice with Accountability, Ashgate.  

Harel, A 2024. Challenges of Enabling Seamless Operation, Submitted to HSI 2024  

DOI:  10.13140/RG.2.2.34261.40169  

Harel, A 2024 (A). Combat fire support: the Tze’elim A case study,  

DOI: 10.13140/RG.2.2.33070.73283 

Harel, A 2024 (B). Combat fire support: the Tze’elim B case study 

DOI: 10.13140/RG.2.2.16922.66248 

Harel, A 2024 (C). Combat fire support: the Kandahar case study 

DOI: 10.13140/RG.2.2.26988.99203 

Leveson, NG 2004. A New Accident Model for Engineering Safer Systems. Safety Science 42(4):237-270, 

DOI: 10.1016/S0925-7535(03)00047-X 

Reason, J 1997. Managing the Risks of Organizational Accidents. Ashgate, London.  

 

https://pubmed.ncbi.nlm.nih.gov/?term=Charles%20R%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Hood%20B%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Derosier%20JM%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Gosbee%20JW%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Li%20Y%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Caird%20MS%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Biermann%20JS%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Biermann%20JS%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Hake%20ME%5BAuthor%5D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031337/
https://doi.org/10.1186%2Fs13037-016-0107-8
http://dx.doi.org/10.13140/RG.2.2.34261.40169
http://dx.doi.org/10.13140/RG.2.2.33070.73283
http://dx.doi.org/10.13140/RG.2.2.16922.66248
http://dx.doi.org/10.13140/RG.2.2.26988.99203

