
Combat fire support: the Kandahar case study 

Avi Harel, Ergolight 

ergolight@gmail.com 

Combat fire support (CFS)   

A basic model describing CFS comprises an interaction between a controller and a servicer. The 

controller is a combat unit in need for fire support, and the server is another combat unit assisting 

the controller, providing the combat fire, shooting at the enemy.  

During a CFS session, the server situation needs to adapt to the controller. A situation in which 

the server complies with the controller may be regarded as consistent with respect to the 

controller.  

The Kandahar case study - 2001 

Three American soldiers and five Afghans were killed when special forces troops called in an 

airstrike meant to hit Taliban positions on Dec. 5, 2001. Instead, a B-52 bomber dropped a 2,000-

pound satellite-guided bomb on a battalion command post occupied by the American forces and 

Afghan allies. Pentagon officials later said the bomb went astray, because the Air Force combat 

controller who set the coordinates for the attack had changed the batteries on his GPS receiver, 

which reset the coordinates back to the user’s own location rather than the Taliban position. The 

officials attributed the accident to training problems.  

The analysis indicated that the accident could have been prevented had the design prohibit 

changing the GPS operation mode. The conclusion is that this and similar accidents could and 

may have been prevented by avoiding mode setting by default, and by applying the methods of 

impact validation and of scenario-driven operation. 

Accident Root-Cause Analysis (RCA) 

Accident proofing should be based on RCA. Safety in the CFS relies on situational consistency. 

The operation might fail when the situation does not comply with the controller’s needs. In this 

case, the supporting unit was shooting at the front unit, instead of the enemy. 

The analysis indicated that the safety measures were not sufficient, and that the accident could 

have been prevented had the front unit controlled the GPS mode and the target point sent to the 

supporting unit. In this particular case, the primary scenarios were those associated with the GPS 

operation modes: target acquisition vs. navigation. 

mailto:ergolight@gmail.com


Operational failure 

Traditional RCA is reactive, namely, specific to an incident. In reactive RCA we look for a single 

main important cause of the specific accident. The conclusions are often circumstantial, justified 

by quoting Murphy’s Law. This accident is commonly attributed to missing guidance about 

changing the GPS battery during a CFS procedure. 

To eliminate failure, we need to understand how it is developed from an exception.  The challenge 

is to get enough evidence to understand how exceptions are generated. In this case, the failure 

is attributed to coincidence, but it should have been regarded as a design mistake, namely, lack 

of protection from the unexpected. 

Proactive RCA 

Professional RCA should be proactive. A proactive version of Murphy’s Law is that failure results 

from design mistakes, and therefore exceptions should be expected and prevented by design. In 

this case, the challenge is to detect and block the event sequence that ended up in the accident.  

RCA conclusions 

The accident of this case study is typical of systems that do not maintain the primary scenario 

variable. In such cases, the scenarios are fuzzy, and consequently the server might assume a 

wrong scenario. If the scenario is fuzzy, then the system design may not include means for 

detecting problematic situations. In this case study, the system did not include means to detect 

that the GPS mode was not compliant with the CFS scenario. This is typical of CFS design in 

which the operational scenario is not defined explicitly. The GPS control was not integrated in the 

system, and therefore the GPS modes were not integrated in the CFS control. 

Modeling the fire support 

The coordination model is based on the cybernetics model of feedback control loops, as described 

in the STAMP paradigm, and developed in the STPA methodology (Leveson, 2004). The 

engineering challenges of CFS are to obtain and employ models of normal operation and of 

operational failure.  

CFS may be described in terms of a controller server interaction, in which the server is a fire 

support unit, and the controller is the front unit that needs the fire support. Normal interaction is 

task driven, and subject to proper coordination between the controller and the server. The 

controller issues commands or requests to the server, and the server provides situation and 

activity reports.  

Operational risks and hazards 

Operational risks may be classified as either expected or unexpected. The risks of Friendly Fire 

Accidents (FFA) are well understood, and they may be regarded as expected. However, the ways 



hazards are generated might be unexpected. Expected hazards are associated with triggers, 

situations, and activity.  

Triggers 

Triggers may be classified according to their actuators: human or technological. Human operators 

are error prone. A human factors version of Murphy’s Law is: if the design enables the operators 

to fail, eventually they will. Technological triggers are much rarer because they are captured during 

the system verification process. Human triggers may be either unintentional, due to confusion or 

due to the ‘irony of automation’. In this case study the trigger was combined: it was the human 

operator, who followed the instruction to change the GPS battery, as indicated by the GPS.   

Situational risks 

Situational risks may be classified as either external or internal:  

• Externally, normal operation must be in the performance envelope. External risks are 

due to approaching the performance boundaries, defined as limits of performance 

variables. In the context of CFS, the performance envelope consists of the visibility and 

safety zone, ammunition limitations and restrictions, etc.  

• Internally, the situations must comply with the scenario, as perceived in the controller. 

Internal risks are due to diversion from the situations defined as normal.  

In normal design, almost all nontrivial system units are prone to situational errors, in terms of 

accessibility or availability. For example, if a critical feature, such as launching a shell or a missile, 

is enabled or accessible in the wrong scenario, then the operation might fail due to a design 

mistake of under-constrained activity (beta type). The Kandahar accident is due to missing 

constraints about the GPS modes. 

Situation coordination is error prone, as the number of possible situations grows exponentially 

with the number of state machines employed in the system operation. In traditional interaction 

design we empower the human operators, enabling them to access rarely used critical features, 

to cope with unexpected situations. These features are error prone: when activated 

unintentionally, the results are unexpected.  

Activity risks 

Activity risks are mode errors, namely, failures due to operating while the mode (operational state) 

of a system unit does not comply with the operational scenario. Almost all system units, and 

almost all system features, are prone to activity risks, due to mistakes in constraining the system 

situation (cf Harel, 2021).  

Mode errors may be due to enabling operation in exceptional or in fuzzy situations. In such 

situations, the activity intended for a particular scenario might be risky in other scenarios. 



Protection methods 

The framework  

To design the coordination between the front unit and the supporting unit we may apply the 

principle of multiple layer defense, as demonstrated using the Swiss Cheese illustration (Reason, 

1997). In the context of CFS, we may apply following approaches: 

1. Preventive: scenario-driven mode setting,  

2. Proactive: impact validation, and  

3. Reactive: compliance verification.  

Preventive: scenario-driven mode setting 

In normal operation, the situation is scenario driven. The controller and the server are coordinated 

by the operational scenario. Scenarios may be used as situation vectors, namely, pointers to the 

set of state machines, thus reducing the situational complexity from exponential to linear. This 

model assumes that both the controller and the server assume the same scenario, implying that 

the scenario should be implemented as a concrete system entity that the system should handle.  

This case study demonstrates the need for scenario-driven setting of the service situation.  (cf. 

Harel, 2021). The accident is due to failure to maintain situation compliance following a change 

of the operational scenario. This kind of accident is typical of systems that do not maintain the 

primary scenario variable. In such cases, the scenarios are fuzzy, and consequently different 

system components might assume different scenarios. In such cases, the situation is not 

consistent. In this accident, the GPS mode could have been associated uniquely with the 

operational scenario, and the active GPS mode would have been derived directly from the active 

scenario. This is possible if the CFS management is computerized. 

Proactive: impact validation 

The accident could have been prevented had the CFS units followed a validation protocol. 

According to this protocol, the supporting unit should have informed the front unit about the 

intended shooting point and the front unit should have verified that the intended point suited the 

fire needs and provided a warning if it didn’t.   

This method was integrated in the 1993 revision of the safety guidelines following the Tze’elim B 

accident.  

Reactive: compliance verification 

The supporting unit could have verified that the command complies with the operative scenario. 

The verification may be automated, if the CFS operation is managed by a computer, which traces 

the activity and detects instances when is does not comply with the scenario.  



The abstract form of this method is that the operation management should be computerized, and 

the computer should trace the execution and alert in case of exception. 

Implementation 

The key to enabling the coordination is defining the constraints in terms of rules. Many rules are 

generic, and customizable. This feature enables reducing the costs of eliminating operational 

risks. 

Situational rules 

To enable the situation adaptation, the scenario should be defined explicitly, and implemented as 

a primary system variable. Otherwise, different system components might assume different 

scenarios, and the corresponding situations might be different. The scenarios should be defined 

such that a scenario change involves: 

• Enforcing consistent change of the adaptable variables 

• Verification of the consistency of unadaptable variables. 

In this case study, the relevant scenarios were target acquisition and navigation. The active 

scenario was of target acquisition, and the derived GPS mode was accordingly. The rules for 

scenario-mode compliance should be: 

• While in the target acquisition scenario, the GPS mode should be target acquisition  

• While in the navigation scenario, the GPS mode should be navigation. 

The operation in the incident involved violation of the first rule, namely, the scenario was target 

acquisition, and the GPS mode changed by default to navigation. Apparently, the design of the 

CFS did not include the proper verification tests.  

Enforcing the situational rules 

To enable the situation verification, the system requirement should specify the operational 

scenarios, the system design should manage the scenarios, and the software program should 

verify that the implementation complies with the design.  

The focus of situation verification is on the mode compliance with the scenario according to the 

rules and on disabling the operation when they do not comply with the scenario. The design 

challenge is to specify the rules defining the scenario-mode compliance and the reaction to 

violation of these rules.  

Activity rules 

Activity may be defined in terms of changes in the system situation. Accordingly, activity rules are 

about situational changes. The activity rule applicable to this case study is: 



• On spontaneous change of the GPS mode, the system should alert about the inconsisten 

situation. 

Error proofing 

To be on the safe side, we should protect the system from all risky situations, because we cannot 

tell when one of them might be disastrous.  Practically, this implies that error proofing ought to be 

a key topic of systems engineering.   

Enforcing situation awareness 

To enforce the operator’s awareness of the rule violation we need to apply two mechanisms: 

• Situational verification: ongoing notification, as long as the situation does not comply with 

the rules 

• Activity verification: an alarm on changing from normal to exceptional situation. 

Conclusions 

The article presents a model of normal CFS and of FFA due to diversion from the normal 

procedures.    

The Kandahar accident demonstrates a need for early detection of exceptional situations, and 

also a method for detecting them. The method demonstrated here is based on rules for 

associating the situation of the supporting unit with the scenarios. 

The vision proposed here is that system engineering standards may include a chapter on when 

and how to apply the method for scenario-driven operation. 

References 

Harel, A 2021. Scenario-based modelling DOI: 10.13140/RG.2.2.12834.35523 

Harel, A 2024 (A). Combat fire support: the Tze’elim A case study 

Harel, A 2024 (B). Combat fire support: the Tze’elim B case study 

Leveson, N 2004. A new accident model for engineering safer systems. Safety science 42 (4), 

237-270, 2004. 3052 

Reason, J 1997. Managing the Risks of Organizational Accidents, Ashgate. 

 

http://dx.doi.org/10.13140/RG.2.2.12834.35523

