
Combat fire support: the Tze’elim A case study 

Avi Harel, Ergolight 

ergolight@gmail.com 

Combat fire support (CFS)   

A basic model describing CFS comprises an interaction between a controller and a servicer. The 

controller is a combat unit in need for fire support, and the server is another combat unit assisting 

the controller, providing the combat fire, shooting at the enemy.  

During a CFS session, the server situation needs to adapt to the controller. A situation in which 

the server complies with the controller may be regarded as consistent with respect to the 

controller.  

The Tze’elim A case study - 1990 

The Tze’elim Training base is located in Israel. The accident occurred while a reserve unit was 

conducting an exercise involving the capture of an enemy position. An artillery shell exploded 

near a group of soldiers on a training exercise, killing five and wounding ten. The accident resulted 

from a wrong command by the artillery officer at the front unit, applying the command code of the 

first stage of the plan, also to the second stage, after the front unit had already settled at the target 

position.  

Accident Root-Cause Analysis (RCA) 

Accident proofing should be based on RCA. Safety in the CFS relies on situational consistency. 

The operation might fail when the situation does not comply with the controller’s needs. In this 

case, the supporting unit was shooting at TGT1, while the controller’s need was to shoot at TGT2. 

The analysis indicated that the safety measures were not sufficient, and that the accident could 

have been prevented had the exercise managers controlled the activity according to the plan. In 

this particular case, the primary scenarios were the stages of the exercise.  

Operational errors 

Traditional RCA is reactive, namely, specific to an incident. In reactive RCA we look for a single 

main important cause of the specific accident. The conclusions are often circumstantial, justified 

by quoting Murphy’s Law. This accident is commonly attributed to a coding error.  

Analysis of many accidents has shown that the term human error is just a name for operational 

failure that the human operator was not able to prevent (cf. Dekker, 2007).  

mailto:ergolight@gmail.com


To eliminate human errors, we need to understand how the operation fails.  The challenge is to 

get enough evidence to understand how errors are generated. In this case, an error in the 

command code was regarded as an operator’s slip, but it should have rather been regarded as a 

design mistake, namely, lack of warning about the code error.  

Proactive RCA 

Professional RCA should be proactive. A proactive version of Murphy’s Law is that failure results 

from design mistakes, and therefore errors should be expected and prevented by design. In this 

case, the challenge is to detect and block erroneous codes.  

RCA conclusions 

The accident of this case study is typical of systems that do not maintain the primary scenario 

variable. In such cases, the scenarios are fuzzy, and consequently the server might assume a 

wrong scenario. If the scenario is fuzzy, then the system design may not include means to detect 

problematic situations. In this case, the system did not include means enabling to detect that the 

target coordinates were not compliant with the exercise stage. This is typical of CFS design in 

which the operational scenario is not defined explicitly. The exercise stages were defined clearly, 

but the system was not automated, and therefore the stages were not integrated in the exercise 

control. 

Modeling the fire support 

The coordination model is based on the cybernetics model of feedback control loops, as described 

in the STAMP paradigm, and developed in the STPA methodology (Leveson, 2004). The 

engineering challenges of CFS are to obtain and employ models of normal operation and of 

operational failure.  

CFS may be described in terms of a controller server interaction, in which the server is a fire 

support unit, and the controller is the front unit that needs the fire support. Normal interaction is 

task driven, and subject to proper coordination between the controller and the server. The 

controller issues commands or requests to the server, and the server provides situation and 

activity reports.  

Operational risks and hazards 

Operational risks may be classified as either expected or unexpected. The risks of Friendly Fire 

Accidents (FFA) are well understood, and they may be regarded as expected. However, the ways 

hazards are generated might be unexpected. Expected hazards are associated with triggers, 

situations, and activity.  

Triggers 

Triggers may be classified according to their actuators: human or technological. Human operators 

are error prone. A human factors version of Murphy’s Law is: if the design enables the operators 



to fail, eventually they will. Technological triggers are much rarer because they are captured during 

the system verification process. Human triggers may be either unintentional, due to confusion or 

due to the ‘irony of automation’. Unintentional human triggers, such as in the Tze’elim A accident, 

are called slips (Norman, 1983).   

Situational risks 

Situational risks may be classified as either external or internal:  

• Externally, normal operation must be in the performance envelope. External risks are 

due to approaching the performance boundaries, defined as limits of performance 

variables. In the context of CFS, the performance envelope consists of the visibility and 

safety zone, ammunition limitations and restrictions, etc.  

• Internally, the situations must comply with the scenario, as perceived in the controller. 

Internal risks are due to diversion from the situations defined as normal.  

In normal design, almost all nontrivial system units are prone to situational errors, in terms of 

accessibility or availability. For example, if a critical feature, such as launching a shell or a missile, 

is enabled or accessible in the wrong scenario, then the operation might fail due to a design 

mistake of under-constrained activity. The Tze’elim A accident is due to missing constraints about 

the target of the CFS. 

Situation coordination is error prone, as the number of possible situations grows exponentially 

with the number of state machines employed in the system operation. In traditional interaction 

design we empower the human operators, enabling them to access rarely used critical features, 

to cope with unexpected situations. These features are error prone: when activated 

unintentionally, the results are unexpected.  

Activity risks 

Activity risks are mode errors, namely, failures due to operating while the mode (operational state) 

of a system unit does not comply with the operational scenario. Almost all system units, and 

almost all system features, are prone to activity risks, due to mistakes in constraining the system 

situation (cf Harel, 2021).  

Mode errors may be due to enabling operation in exceptional or in fuzzy situations. In such 

situations, the activity intended for a particular scenario might be risky in other scenarios. 

Protection methods 

The framework  

To design the coordination between the front unit and the supporting unit we may apply the 

principle of multiple layer defense, as demonstrated using the Swiss Cheese illustration (Reason, 

1997). In the context of CFS, we may apply following approaches: 



1. Preventive: scenario-driven mode setting,  

2. Proactive: impact validation, and  

3. Reactive: compliance verification.  

Preventive: scenario-driven mode setting 

In normal operation, the situation is scenario driven. The controller and the server are coordinated 

by the operational scenario. Scenarios may be used as situation vectors, namely, pointers to the 

set of state machines, thus reducing the situational complexity from exponential to linear. This 

model assumes that both the controller and the server assume the same scenario, implying that 

the scenario should be implemented as a concrete system entity that the system should handle.  

This case study demonstrates the need for scenario-driven setting of the service situation.  (cf. 

Harel, 2021). The accident is due to failure to maintain situation compliance following a change 

of the operational scenario. This kind of accident is typical of systems that do not maintain the 

primary scenario variable. In such cases, the scenarios are fuzzy, and consequently different 

system components might assume different scenarios. In such cases, the situation is not 

consistent. In this accident, the target points could have been associated uniquely with the 

exercise stage according to the plan, and the active point would have been derived directly from 

the active stage. This is possible if the exercise management is computerized. 

Proactive: impact validation 

The accident could have been prevented had the CFS units followed a validation protocol. 

According to this protocol, the supporting unit should have informed the front unit about the 

intended target coordinates, the front unit should have verified that the target coordinates suited 

the fire needs and provided a warning if they didn’t.   

This method was integrated in the 1993 revision of the safety guidelines following the Tze’elim B 

accident.  

Reactive: compliance verification 

Both the front unit and the supporting unit could have verified that the command complies with 

the plan. The verification may be automated, if the CFS exercise is managed by a computer, 

which traces the exercise and detects instances when the command does not comply with the 

exercise stage.  

The abstract form of this method is that the exercise management should be computerized, and 

the computer should trace the execution and alert when the execution diverts from the plan. 

Implementation 

The key to enabling the coordination is defining the constraints in terms of rules. Many rules are 

generic, and customizable. This feature enables reducing the costs of eliminating operational 

risks. 



Situational rules 

To enable the situation adaptation, the scenario should be defined explicitly, and implemented as 

a primary system variable. Otherwise, different system components might assume different 

scenarios, and the corresponding situations might be different. The scenarios should be defined 

such that a scenario change involves: 

• Enforcing consistent change of the adaptable variables 

• Verification of the consistency of unadaptable variables. 

In this case study, the scenario change was from stage 1 to stage 2. The scenario change implies 

changing the target point. The rules for scenario-mode compliance should be: 

• While in stage 1, the target point should be TGT1 

• While in stage 2, the target point should be TGT2 

The operation in the incident involved violation of the second rule, namely, the target point in stage 

2 was TGT1 instead of TGT2. Apparently, the design of the CFS did not include the proper 

verification tests.  

Enforcing the situational rules 

To enable the situation verification, the system requirement should specify the operational 

scenarios, the system design should manage the scenarios, and the software program should 

verify that the implementation complies with the design.  

The focus of situation verification is on the mode compliance with the scenario according to the 

rules and on disabling the operation when they do not comply with the scenario. The design 

challenge is to specify the rules defining the scenario-mode compliance and the reaction to 

violation of these rules.  

Activity rules 

Activity may be defined in terms of changes in the system situation. Accordingly, activity rules are 

about situational changes. The activity rule applicable to this case study is: 

• On change to the stage 2, the system should prompt the operators to change to TGT2. 

Error proofing 

To be on the safe side, we should protect the system from all risky situations, because we cannot 

tell when one of them might be disastrous.  Practically, this implies that error proofing ought to be 

a key topic of systems engineering.   



Enforcing situation awareness 

To enforce the operator’s awareness of the rule violation we need to apply two mechanisms: 

• Situational verification: ongoing notification, as long as the situation does not comply with 

the rules 

• Activity verification: an alarm on changing from normal to exceptional situation. 

Learning 

The conclusion was that the safety rules should be revised and should include a chapter on 

proactive impact validation. Unfortunately, the safety authorities hesitated about the way they 

should implement the revision, thus enabling the Tze’elim B accident in 1992 (Harel, 2024). 

Conclusions 

The article presents a model of normal CFS and of FFA due to diversion from the normal 

procedures.    

The Tze’elim A accident demonstrates a need for early detection of exceptional situations, and 

also a method for detecting them. The method demonstrated here is based on rules for 

associating the situation of the supporting unit with the scenarios. 

The vision proposed here is that system engineering standards may include a chapter on when 

and how to apply the method for scenario-driven operation. 

References 

Dekker, S 2007. Just Culture: Balancing Justice with Accountability, Ashgate.  

Harel, A 2021. Scenario-based modelling DOI: 10.13140/RG.2.2.12834.35523 

Harel, A 2024. Combat fire support: the Tze’elim B case study 

Leveson, N 2004. A new accident model for engineering safer systems. Safety science 42 (4), 

237-270, 2004. 3052 

Norman, DA 1983. Design Rules Based on Analyses of Human Error. Communications of the 

Association for Computing Machinery, 26, 254-258. 

Reason, J 1997. Managing the Risks of Organizational Accidents, Ashgate. 

http://dx.doi.org/10.13140/RG.2.2.12834.35523

